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Abstract
Authors have highlighted for decades that sample size justification through power analysis is the
exception rather than the rule. Even when authors do report a power analysis, there is often no
justification for the smallest effect size of interest, or they do not provide enough information for
the analysis to be reproducible. We argue one potential reason for these omissions is the lack of
a truly accessible introduction to the key concepts and decisions behind power analysis. In this
tutorial targeted at complete beginners, we demonstrate a priori and sensitivity power analysis
using jamovi for two independent samples and two dependent samples. Respectively, these
power analyses allow you to ask the questions: “How many participants do I need to detect a
given effect size?”, and “What effect sizes can I detect with a given sample size?”. We
emphasise how power analysis is most effective as a reflective process during the planning
phase of research to balance your inferential goals with your resources. By the end of the
tutorial, you will be able to understand the fundamental concepts behind power analysis and
extend them to more advanced statistical models.
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Introduction

“If he is a typical psychological researcher, not only has he exerted no prior control over his risk
of committing a type II error, but he will have no idea what the magnitude of this risk is.” (Cohen,

1965, pg. 96)1

For decades researchers have highlighted that empirical research has chronically low statistical

power (Button et al., 2013; Cohen, 1962; Sedlmeier & Gigerenzer, 1989). This means that the

study did not include enough participants to reliably detect a realistic effect size (see Table 1 for

a definition of key terms). One method to avoid low statistical power is to calculate how many

participants you need for a given effect size in a process called “power analysis”. Power

analysis is not the only way to justify your sample size (see Lakens, 2022), but despite

increased attention to statistical power, it is still rare to find articles that justified their sample size

through power analysis (Chen & Liu, 2019; Guo et al., 2014; Larson & Carbine, 2017). Even for

those that do report a power analysis, there are often other problems such as poor justification

for the effect size, misunderstanding statistical power, or not making the power analysis

reproducible (Bakker et al., 2020; Beribisky et al., 2019; Collins & Watt, 2021). Therefore, we

present a beginner’s tutorial which outlines the key decisions behind power analysis and walk

through how it applies to t-tests for two independent samples and two dependent samples. We

expect no background knowledge as we will explain the key concepts and how to interact with

the software we use.

Before beginning the tutorial, it is important to explain why we need power analysis.

There is a negative relationship between the sample size of a study and the effect size the study

can reliably detect. Holding everything else constant, a larger study can detect smaller effect

sizes, and conversely, a smaller study can only detect larger effect sizes. A study can be

described as underpowered if the effect size you are trying to detect is smaller than the effect

size your study has the ability to detect.

If we published or shared the results of all the studies we ever conducted, underpowered

research would be less of a problem. We would just see more statistically non-significant

findings. However, since there is publication bias that favours significant findings (Dwan et al.,

2008; Franco et al., 2014), underpowered studies warp whole fields of research (Button et al.,

1 We are aware of the problem with using gendered language like in the original quote. Despite this issue,
we think the quote still resonates.

https://www.zotero.org/google-docs/?2HclgP
https://www.zotero.org/google-docs/?sk4EKz
https://www.zotero.org/google-docs/?yMWKVA
https://www.zotero.org/google-docs/?vqYtAJ
https://www.zotero.org/google-docs/?ned76b
https://www.zotero.org/google-docs/?ned76b
https://www.zotero.org/google-docs/?YPukBl
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2013). Imagine five research groups were interested in the same topic and performed a similar

study using 50 participants each. The results from the first four groups were not statistically

significant, but the fifth group by chance observed a larger effect size which was statistically

significant. We know that non-significant findings are less likely to be published (Franco et al.,

2014), so only the fifth group published their findings which happened to observe a larger

statistically significant effect.

Now imagine you wanted to build on this research and to inform your study, you review

the literature. All you find is the fifth study reporting a larger statistically significant effect, and

you use that effect size to inform your study, meaning you recruit a smaller sample than if you

expected a smaller effect size. If studies systematically use small sample sizes, only larger more

unrealistic effect sizes are published, and smaller more realistic effect sizes are hidden.

Moreover, researchers tend to have poor intuitions about statistical power, where they

underestimate what sample size they need for a given effect size (Bakker et al., 2016). In

combination, this means researchers tend to power their studies for unrealistically large effect

sizes and think they need a sample size which would be too small to detect more realistic effect

sizes (Etz & Vandekerckhove, 2016). In short, systematically underpowered research is a

problem as it warps researchers’ understanding of both what constitutes a realistic effect size

and what an appropriate sample size is.

A power analysis tutorial article is nothing new. There are comprehensive guides to

power analysis (e.g., Brysbaert, 2019; Perugini et al., 2018), but from our perspective, previous

tutorials move too quickly from beginner to advanced concepts. In research methods curricula,

educators only briefly cover power analysis across introductory and advanced courses (Sestir et

al., 2021; TARG Meta-Research Group, 2020). In their assessment of researcher’s

understanding of power analysis, Collins and Watt (2021) advise that clearer educational

materials should be available. In response, our approach is presenting a beginner’s tutorial that

can support both students and established researchers who are unfamiliar with power analysis.

We have split our tutorial into three parts starting with a recap of the statistical concepts

underlying power analysis. There are common misconceptions around useful types of power

analysis (Beribisky et al., 2019), so it is important to outline what we are trying to achieve. In

part two, we outline the decisions you must make when performing a power analysis, like

choosing your alpha, beta, and smallest effect size of interest. We then present a walkthrough in

https://www.zotero.org/google-docs/?YPukBl
https://www.zotero.org/google-docs/?dvL7hF
https://www.zotero.org/google-docs/?dvL7hF
https://www.zotero.org/google-docs/?3t6SMh
https://www.zotero.org/google-docs/?tLQsTq
https://www.zotero.org/google-docs/?7OgHUP
https://www.zotero.org/google-docs/?Zereac
https://www.zotero.org/google-docs/?Zereac
https://www.zotero.org/google-docs/?wskA9u
https://www.zotero.org/google-docs/?zyYndX
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part three on performing a priori and sensitivity power analyses for two independent samples

and two dependent samples. Absolute beginners unfamiliar with power analysis should start

with part one, while readers with a general understanding of power analysis can start with part

two. We conclude with recommendations for future reading that outlines power analysis for

more advanced statistical tests.

Part One: The Statistics Behind Power Analysis

Type I and Type II Errors

The dominant theory of statistics in psychology is known as “frequentist” or “classical” statistics.

Power analysis is used within this framework where probability is assigned to “long-run”

frequencies of observations (many things happening over time). In contrast, Bayesian statistics

uses another theory of probability that can be applied to individual events through combining

prior belief with a likelihood function2. In this article, we are only covering the frequentist

approach where the “long-run” probability is the basis of where you get p-values from.

Researchers often misinterpret the information provided by p-values (Goodman, 2008).

In our following explanations, we focus on the Neyman-Pearson approach (Lakens, 2021),

where the aim of the frequentist branch of statistics is to help you make decisions and limit the

number of errors you will make in the long-run (Neyman, 1977). The formal definition of a

p-value by Cohen (1994) is the probability of observing a result at least as extreme as the one

observed, assuming the null hypothesis (there is no effect) is true. This means a small p-value

(closer to 0) indicates the results are unlikely if the null hypothesis is true, while a large p-value

(closer to 1) indicates the results are more likely if the null is true.

The probabilities do not relate to individual studies but tell you the probability attached to

the procedure if you repeated it many times. So, a p-value of .05 means that, if you were to

keep taking lots of samples from the population, and the null hypothesis was true, the chance of

finding a result at least as extreme as the one we have seen is 5%, or 1 in 20. So, this can be

phrased as “if we conducted an infinite number of studies with the same design as this, 5% of all

of the results would be at least this extreme”. The reason to use long-run probability, is that any

2 See Kruschke and Liddell (2018a) for an introduction and Kruschke and Liddell (2018b) for how power analysis
applies to Bayesian statistics.

https://www.zotero.org/google-docs/?sJ4EbF
https://www.zotero.org/google-docs/?9nTADF
https://www.zotero.org/google-docs/?fMUQyk
https://www.zotero.org/google-docs/?1ZKcgE
https://www.zotero.org/google-docs/?uUBoQU
https://www.zotero.org/google-docs/?p7crUk
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single measurement comes with it the possibility of some kind of ‘error’, or unaccounted for

variance that are not assumed in our hypotheses. For example, the researcher’s reaction times,

the temperature of the room, the participant’s level of sleep, the brightness of the screens on

equipment being used, etc. could all cause slight changes to the accuracy of the measures we

make. In the long-run, these are likely averaged out.

We used a p-value of .05 as an example because an alpha value of .05 tends to be used

as the cut-off point in psychology to conclude “we are happy to say that this result is

unlikely/surprising enough to make a note of”. Alpha (sometimes written as “α”) is the probability

of concluding there is an effect when there is not one, known as a type I error (said, type one

error) or false positive. This is normally set at .05 (5%) and it is the threshold we look at for a

significant effect. Setting alpha to .05 means we are willing to make a type I error 5% of the time

in the long-run. In the Neyman-Pearson approach, we create cutoffs to help us make decisions

(Lakens, 2021). We want to know if we can reject the null hypothesis and conclude we have

observed some kind of effect. By setting alpha, we are saying the p-value for this study must be

smaller than alpha to reject the null hypothesis. If our p-value is larger than alpha, we cannot

reject the null hypothesis. This is where the term “statistical significance” comes from. As a

scientific community, we have come to the group conclusion that this cut-off point is enough to

say “the null hypothesis may not be true” and we understand that in the long-run, we would be

willing to make a mistake 5% of the time if the null was really true.

It is important to understand that the cut-off of 5% appears immutable now for disciplines

like psychology that routinely use 5% for alpha, but it was never meant as a fixed standard of

evidence. Fisher - one of the pioneers of hypothesis testing - commented that he accepted 5%

as a low standard of evidence across repeated findings (Goodman, 2008). Fisher (1926)

emphasised that individual researchers should consider which alpha is appropriate for the

standard of evidence in their study, but this nuance has been lost over time. For example,

Bakker et al. (2020) reported that for studies that specifically mention alpha, 91% of power

analyses use 5%. This shows how, in psychology, alpha is synonymous with 5% and it is rare

for researchers to use a different alpha value.

The opposite problem is where we say there is not an effect when there actually is one.

This is known as a type II error (said, type two error) or a false negative. In the

Neyman-Pearson approach, this is the second element of using hypothesis testing to help us

https://www.zotero.org/google-docs/?fGYckI
https://www.zotero.org/google-docs/?TNoBld
https://www.zotero.org/google-docs/?aQrvk1
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make decisions. In addition to alpha limiting how many type I errors (false positives) we are

willing to make, we set beta to limit how many type II errors (false negatives) we are willing to

make. Beta (sometimes written as “β”) is the probability of concluding there is not an effect

when there really is one. This is normally set at .20 (20%), which means we are willing to make

a type II error 20% of the time in the long-run. By setting these two values, we are stating rules

to help us make decisions and trying to limit how often we will be wrong in the long-run. We will

consider how you can approach these decisions in part two.

One- and two-tailed tests

In significance testing, we describe the null hypothesis as a probability distribution centred on

zero. We can reject the null hypothesis if our observed result is greater than a critical value

determined by our alpha value. The area after the critical value creates a rejection region in the

outer tails of the distribution. If the observed result is in this rejection region, we conclude the

data would be unlikely assuming the null hypothesis is true, and reject the null hypothesis.

There are two ways of stating the rejection region. These are based on the type of

alternative hypothesis we are interested in. There are two types of alternative hypotheses: (1)

non-directional, and (2) directional. A non-directional hypothesis is simply a statement that there

will be any effect, irrespective of the direction of the effect, e.g., ‘Group A is different from Group

B’. In contrast to this, the assumed null-hypothesis is ‘Group A is not different from Group B’.

Group A could be smaller than Group B, or Group A could be bigger than Group B. In both

situations, the null hypothesis could be rejected. A directional hypothesis, on the other hand, is

a statement that there will be a specific effect, e.g., ‘Group A is bigger than Group B’. Now, the

assumed null hypothesis is ‘Group A is not bigger than Group B’. In this instance even if we find

evidence that Group B is bigger than Group A, the null hypothesis could not be rejected.

This is where the number of tails in a test comes in. In a two-tailed test (also known as a

non-directional test), when alpha is set to 5%, there are two separate 2.5% areas to create a

rejection region in both the positive and negative tails. Together, the two tails create a total area

of 5%. To be statistically significant, the observed result can be in either the positive or negative

rejection regions. Group A could be higher than group B, or group B could be higher than group

A, you are just interested in a difference in any direction.
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In a one-tailed test (also known as a directional test), there is just one larger area

totalling 5% to create a rejection region in either the positive or negative tail (depending on the

direction you are interested in). To be statistically significant, the critical value is slightly smaller,

but the result must be in the direction you predicted. This means you would only accept a result

of ‘group A is bigger than group B’ as significant. You could still find that group B is bigger than

group A, but no matter how big the difference is, you cannot reject the null hypothesis as it is

contrary to your directional prediction.

Statistical Power
Statistical power is defined as the probability of correctly deciding to reject the null hypothesis

when the null hypothesis is not true. In plain English: the likelihood of successfully detecting an

effect that is actually there (see Baguley (2004) for other lay definitions). When we have

sufficient statistical power, we are making the study sensitive enough to avoid making too many

type II errors. Statistical power is related to beta where it is 1-β and typically expressed as a

percentage. If we use a beta value of .20, that means we are aiming to have statistical power of

80% (1 - .20 = .80 = 80%).

Effect Size
For statistical power, we spoke about “detecting an effect that is actually there”. The final piece

of the power analysis puzzle is the smallest effect size of interest. An effect size can be defined

as a number that expresses the magnitude of a phenomenon relevant to your research question

(Kelley & Preacher, 2012). Depending on your research question, this includes the difference

between groups or the association between variables. For example, you could study the

relationship between how much alcohol you drink and reaction time. We could say “alcohol has

the effect of slowing down reaction time”. However, there is something missing from that

statement. How much does alcohol slow down reaction time? Is one drop of alcohol enough or

do you need to consume a full keg of beer before your reaction time decreases by just 1

millisecond? The smallest effect size of interest outlines what effect size you would consider

practically meaningful for your research question.

Effect sizes can be expressed in two ways: as an unstandardised effect, or as a

standardised effect. An unstandardised effect size is expressed in the original units of

measurement. For example, if you complete a Stroop task, you measure response times to

https://www.zotero.org/google-docs/?uqofXN
https://www.zotero.org/google-docs/?uRD4L3
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congruent and incongruent colour words in milliseconds. The mean difference in response time

to congruent and incongruent conditions is an unstandardised effect size and will remain

consistent across studies. This means you could say one study reporting a mean difference of

106ms had a larger effect than a study reporting a mean difference of 79ms.

Unstandardised effect sizes are easy to compare if the measurement units are

consistent, but in psychology we do not always have easily comparable units. Many

subdisciplines use Likert scales to measure an effect of interest. For example, in mental health

research, one might be interested in how much anxiety someone experiences each week

(participants are often given options such as “not at all”, “a little”, “neither a little nor a lot”, “a lot”,

and “all the time”). These responses are not in easily interpretable measurements but, as

scientists, we would still like to provide a numerical value to explain what an effect means3.

This is where standardised effect sizes are useful as they allow you to compare effects

across contexts, studies, or slightly different measures. For example, if study one used a

five-point scale to measure anxiety but study two used a seven-point scale, a difference of two

points on each scale has a different interpretation. A standardised effect size allows you to

convert these differences into common measures, making it easier to compare results across

studies using different units of measurement. There are many types of standardised effect sizes,

such as Cohen’s d or η2 (said, eta squared), which we use in different contexts (see Lakens,

2013 for an overview). In this tutorial, we mainly focus on Cohen’s d as the standardised mean

difference as it is the effect size used in jamovi, the software we use in part three below.

Although there are different formulas, Cohen’s d is normally the mean difference divided by the

pooled standard deviation. This means it represents the difference between groups or

conditions, expressed as standard deviations instead of the original units of measurement.

Standardised and unstandardised effect sizes each have their strengths and

weaknesses (Baguley, 2009). Unstandardised effect sizes are easier to interpret, particularly for

lay readers who would find it easier to understand a difference of 150ms instead of 0.75

standard deviations. However, it can be harder to compare unstandardised effect sizes across

studies when there are different measurement scales. Standardised effect sizes help with this

as they convert measures to standardised units, making it easier to compare effect sizes across

3 Note, we use this as an example of measurements with different scales, but it is normally better to
analyse ordinal data with ordinal models (see Bürkner & Vuorre, 2019).

https://www.zotero.org/google-docs/?nkD8oi
https://www.zotero.org/google-docs/?lpzG0i
https://www.zotero.org/google-docs/?lpzG0i
https://www.zotero.org/google-docs/?8c5J6w
https://www.zotero.org/google-docs/?w6RdGT


Version 2: Updated 04/04/2022

studies. However, the standardisation process can cause problems, as effect sizes can change

depending on whether the design was within- or between-subjects, if the measures are

unreliable, and if sampling affects the variance of the measures through restricting the values to

a smaller range of the scale (Baguley, 2009). Similarly, the frame of reference is important when

interpreting standardised effect sizes. When classifying the magnitude of standardised effects,

Cohen (1988, pg. 25) specifically says “the terms "small," "medium," and "large" are relative, not

only to each other, but to the area of behavioural science or even more particularly to the

specific content and research method being employed in any given investigation”. Cohen

emphasised that the qualitative labels (“small”, “medium,” and “large”) are arbitrarily applied to

specific values, and should be applied differently to different fields. This means that

interpretation should not simply follow rules of thumb that were established outside of the

research field of interest. Although the software we introduce in part three relies on standardised

effect sizes, Baguley (2009) emphasises it is better to focus on interpreting unstandardised

effect sizes wherever possible.

To bring this back to statistical power (successfully detecting a true effect), the bigger an

effect is, the easier it is to detect. In the anxiety example, we could compare the effects of two

types of therapy. If the difference between therapy A and therapy B was, on average, 3 points

on an anxiety scale, it would be easier to detect than if the average difference between therapy

A and therapy B was 1 point. The smaller decrease of 1 point would be harder to detect than the

larger decrease of 3 points. You would need to test more people in each therapy group to

successfully detect this weaker effect because of the greater level of overlap between the two

sets of therapy outcomes. It is this principle that allows us to say that the bigger the effect size,

the easier it is to detect. In other words, if you have the same number of participants, statistical

power increases as the effect size increases.

We have now covered the five main concepts underlying power analysis: alpha, beta,

sample size, effect size, and one- or two-tailed tests. For ease, we have provided a summary of

these concepts, their meaning, and how we often use them in Table 1. It takes time to

appreciate the interrelationship between these concepts, so we recommend using the

interactive visualisation by Magnusson (2021).

https://www.zotero.org/google-docs/?icjR3x
https://www.zotero.org/google-docs/?j43m0y
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Types of power analysis
As the four main concepts behind power analysis are related, we can calculate one as the

outcome if we state the other three. The most common types of power analysis relating to these

outcomes are (1) a priori, (2) sensitivity, and (3) post-hoc. If we want sample size as the

outcome, we use a priori power analysis to determine how many participants we need to reliably

detect a given smallest effect size of interest, alpha, and power. Alternatively, if we want the

effect size as the outcome, we can use sensitivity power analysis to determine what effect size

we can reliably detect given a fixed sample size, alpha, and power.

There is also post-hoc power analysis if we want statistical power as the outcome given

an observed effect size, sample size, and alpha. Post-hoc power analysis is an attractive idea,

but it should not be reported as it essentially expresses the p-value in a different way. There is a

direct relationship between observed power and the p-value of your statistical test, where a

p-value of .05 means your observed power is 50% (Lakens, 2022). Remember, probability in

frequentist statistics does not apply to individual events, so using the observed effect size in a

single study ignores the role of the smallest effect size of interest in the long-run. As post-hoc

power is uninformative, we only focus on a priori and sensitivity power analysis in this tutorial.

Table 1.

Table showing the basic concepts underlying power analysis, what they mean, and how they
are often used.

Concept What it is How it is often used

Alpha (α) Cut-off value for how
frequently we are willing
to accept a
false-positive.

This is traditionally set to .05 (5% of the time), but it
is often set to lower thresholds in disciplines like
physics. The lower alpha is, the fewer
false-positives there will be in the long-run.

Beta (β) Cut-off value for how
frequently we are willing
to accept a
false-negative.

In psychology, this is usually set to .20 (20% of the
time), implicitly suggesting false negatives are less
of a concern than false positives. The lower beta is,
the fewer false-negatives there will be in the
long-run.

https://www.zotero.org/google-docs/?1P8epO
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Power (1-β) The chances of
detecting an effect that
exists.

The opposite of beta, power is how likely you are to
detect a given effect size. This is usually set to .80
(80% of the time). The higher power is, the more
likely you are to successfully detect a true effect if it
is there.

Effect size A number that
expresses the
magnitude of a
phenomenon relevant
to your research
question.

Unstandardised effect sizes express the difference
or relationship in the original units of measurement,
such as milliseconds. Standardised effect-sizes
express the difference or relationship in
standardised units, such Cohen’s d. Higher absolute
effect sizes mean a larger difference or stronger
relationship.

One-tailed
test

When the rejection
region in null hypothesis
significance testing is
limited to one tail in a
positive or negative
direction.

If you have a (ideally preregistered) clear directional
prediction, one-tailed tests mean you would only
reject the null hypothesis if the result was in the
direction you predicted. The observed result may be
in the extreme of the opposite tail, but you would
still fail to reject the null hypothesis.

Two-tailed
test

When the rejection
region in null hypothesis
significance testing is
present in the extremes
of both the positive and
negative tail area.

If you would accept a result in any direction, you
can use a two-tailed test to reject the null
hypothesis if the observed result is in the extremes
of either the positive or negative tail.

a priori
power

analysis

How many participants
do we need to reliably
detect a given smallest
effect size of interest,
alpha, and power?

We tend to use the term ‘a priori’ in front of a power
analysis that is conducted before data is collected.
This is because we are deducing the number of
participants from information we already have.

Sensitivity
power

analysis

What effect size could
we detect with our fixed
sample size, alpha, and
desired power?

We use a sensitivity power analysis when we
already know how many participants we have (e.g.,
using secondary data, or access to a rare
population). We use this type of analysis to evaluate
what effect sizes we can reliably detect.
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Part Two: Decision Making in Power Analysis
Now that you are familiar with the concepts, we turn our focus to decision making in power

analysis. In part one, we defined the main inputs used in power analysis, but now you must

decide on a value for each one. Setting your inputs is the most difficult part of power analysis as

you must understand your area of research and be able to justify your choices (Lakens, 2022).

Power analysis is a reflective process that is most effective during the planning stage of

research, meaning that you must balance your inferential goals (what you want to find out) with

the resources you have available (time, money, equipment, etc.). In this part, we will outline

different strategies for choosing a value for alpha, beta/power, one- or two-sided tests, your

smallest effect size of interest, and your sample size.

Alpha
The first input to set is your alpha value. Traditionally, we use .05 to say we are willing to accept

making a type I error up to 5% of the time. There is nothing special about using an alpha of .05,

it was only a brief suggestion by Fisher (1926) for what felt right, but he emphasised you should

justify your alpha for each experiment. Decades of tradition mean the default alpha is set to .05,

but there are different approaches you can take to argue for a different value.

You could start with the traditional alpha of .05 but adjust it for multiple comparisons. For

example, if you were planning on performing four related tests and wanted to correct for multiple

comparisons, you could use this corrected alpha value in your power analysis. If you used the

Bonferroni-Holm method (Cramer et al., 2016), the most stringent alpha value would be set as

.0125 instead of .05. Using this lower alpha value would require more participants to achieve the

same power, but you would ensure your more stringent test had your desired level of statistical

power.

Alternatively, you could argue your study requires deviating from the traditional .05 alpha

value. One approach is to switch between a .05 alpha for suggestive findings and a .005 alpha

for confirmatory findings (Benjamin et al., 2018). This means if you have a strong prediction, or

one that has serious theoretical implications, you could argue your study requires a more

stringent alpha value. Theoretical physicists take this approach of using a more stringent value

even further, and use an alpha value of .0000003 (known as ‘five sigma’). The reason for having

such a stringent alpha level is that to make changes to our understanding of physics would have

https://www.zotero.org/google-docs/?1cQHlg
https://www.zotero.org/google-docs/?amraB7
https://www.zotero.org/google-docs/?30qzG9
https://www.zotero.org/google-docs/?qcNqxi
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knock-on effects to all other sciences, so avoiding false positives is of the utmost importance.

Another approach is to justify your bespoke alpha for each study (Lakens et al., 2018). The

argument here is you should perform a cost-benefit analysis to determine your alpha based on

how difficult it is to recruit your sample. See Maier and Lakens (2021) for a primer on justifying

your alpha.

Beta
Beta also has a traditional value: most studies aim for a beta of .20, meaning they want 80%

power. Cohen (1965) suggested the use of 80% as he felt that type II errors are relatively less

serious than type I errors. At the time of writing, 80% power would lead to roughly double the

sample sizes than the studies he critiqued in his review (Cohen, 1962). Aiming for 80% power

has proved influential as Bakker et al. (2020) found it was the most common value researchers

reported in their power analysis.

Aiming for 80% power was largely a pragmatic approach, so you may argue it is not high

enough. Cohen (1965) explicitly stated that you should ignore his suggestion of 80% if you have

justification for another value. Setting beta to .20 means you are willing to accept a type II error

20% of the time. This implicitly means type II errors are four times less serious than type I errors

when alpha is set to .05. To match the error rates, Bakker et al. (2020) found the next most

common value was 95% power (beta = .05), but it only represented 19% of power analyses in

their sample.

Earlier, we mentioned working with rare populations. Many such populations (such as

those with rare genetic conditions) may receive specialist care or support. If one were to assess

the effectiveness of this specialist care/support, then not finding an effect that does exist (a type

II error) might lead to this support being taken away. In such circumstances, you could argue

that type II errors are just as important to avoid, if not more important, than type I errors. As

such, in these circumstances, you might want to increase your power (have a lower beta value),

to avoid undue harm to a vulnerable population.

Deciding on the beta value for your own study will involve a similar process to justifying

your alpha. You must decide what your inferential goals are and whether 80% power is enough,

knowing you could miss out on a real effect 20% of the time. However, if you increase power to

https://www.zotero.org/google-docs/?TzTycP
https://www.zotero.org/google-docs/?3duZQ2
https://www.zotero.org/google-docs/?UeznCc
https://www.zotero.org/google-docs/?43ViTH
https://www.zotero.org/google-docs/?t9a1kE
https://www.zotero.org/google-docs/?BK2iXH
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90% or 95%, it will require more participants, so you must perform a cost-benefit analysis based

on how easy it will be to recruit your sample (Lakens, 2022).

One- and two-tailed tests

In tests comparing two values, such as the difference between two groups or the relationship

between two variables, you can choose a one- or two-tailed test. Lakens (2016a) argued

one-tailed tests are underused and offer a more efficient procedure. As the rejection region is

one 5% area (instead of two 2.5% areas), the critical value is smaller, so holding everything else

constant, you need fewer participants for a statistically significant result. One-tailed tests also

offer a more severe test of a hypothesis since the observed result must reach the rejection

region in the hypothesised direction. The p-value in your test may be smaller than alpha, but if

the result is in the opposite direction to what you predicted, you still cannot reject the null

hypothesis. This means one-tailed tests can be an effective option when you have a strong

directional prediction.

One-tailed tests are not always appropriate though, so it is important you provide clear

justification for why you are more interested in an effect in one direction and not the other

(Ruxton & Neuhäuser, 2010). If you would be interested in an effect in either a positive or

negative direction, then a two-tailed test would be better suited. One-tailed tests have also been

a source of suspicion since they effectively halve the p-value. For example, Wagenmakers et al.

(2011) highlighted how some studies took advantage of an opportunistic use of one-tailed tests

for their results to be statistically significant. This means one-tailed tests are most convincing

when combined with preregistration (see Kathawalla et al. (2021) if preregistration is a

procedure you are unfamiliar with) as you can demonstrate that you had a clear directional

hypothesis and planned to test that hypothesis with a one-tailed test.

Effect size
In contrast to alpha and beta, there is not one traditional value for your choice of effect size.

Many studies approach power analysis with a single effect size and value for power in mind, but

as we will demonstrate in part three, power exists along a curve. In most cases, you do not

know what the exact effect size is, or you would not need to study it. The effect size you use is

essentially the inflection point for which effect sizes you want sufficient power to detect. If you

want 80% power for an effect of Cohen’s d = 0.40, you will be able to detect effects of 0.40 with

https://www.zotero.org/google-docs/?vbGupo
https://www.zotero.org/google-docs/?8FGzuR
https://www.zotero.org/google-docs/?zrKLMa
https://www.zotero.org/google-docs/?WmqTrm
https://www.zotero.org/google-docs/?WmqTrm
https://www.zotero.org/google-docs/?CXoohu
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80% power. You will have increasingly higher levels of power for effects larger than 0.40, but

increasingly lower levels of power for effects smaller than 0.40. This means it is important to

think of your smallest effect size of interest, as you are implicitly saying you do not care about

detecting effects smaller than this value.

The most difficult part of an a priori power analysis is justifying your smallest effect size

of interest. Choosing an effect size to use in power analysis and interpreting effect sizes in your

study requires subject matter expertise (Panzarella et al., 2021). You must decide what effect

sizes you consider important or meaningful based on your understanding of the measures and

designs in your area. For example, is there a relevant theory that outlines expected effects; what

have studies testing similar hypotheses found; what are the practical implications of the results?

Some of these decisions are difficult to make and all the strategies are not always available, but

there are different sources of information you can consult for choosing and justifying your

smallest effect size of interest (Lakens, 2022).

First, you could identify a meta-analysis relevant to your area of research which

summarises the average effect across several studies. If you want to use the estimate to inform

your power analysis, you must think about whether the results in the meta-analysis are similar to

your planned study. Sometimes, meta-analyses will report a broad meta-analysis amalgamating

all the results, then report moderator analyses for the type of studies they include, so you could

check whether there is an estimate restricted to methods similar to your study. We also know

meta-analyses can report inflated effect sizes due to publication bias (Lakens, 2022), meaning

you can look for a more conservative estimate such as the lower bound of the confidence

interval around the average effect or if the authors report a bias-corrected average effect.

Second, there may be one key study you are modelling your project on. You could use

their effect size to inform your power analysis, but as Panzarella et al. (2021) warn, effect sizes

are best interpreted in context, so question how similar your planned methods are. As a result

from a single study, there will be uncertainty around their estimate, so think about the width of

the confidence interval around their effect size and use a conservative estimate.

Finally, you can consult effect size distributions. The most popular guidelines are from

Cohen (1988) who argued you should use d = 0.2 for new areas of research as the measures

are likely to be imprecise, 0.5 for phenomena observable to the naked eye, and 0.8 for

https://www.zotero.org/google-docs/?lI811a
https://www.zotero.org/google-docs/?VqkRKs
https://www.zotero.org/google-docs/?j4F0sK
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differences you hardly need statistics to detect. Cohen (1988) explicitly warned these guidelines

were for new areas of research, when there was nothing else to go on. But, like many heuristics,

the original suggestions have lost their nuance and are now taken as a ubiquitous ‘rule of

thumb’. It is important to consider what effect sizes mean for your subject area (Baguley, 2009),

but researchers seldom critically choose an effect size. An analysis of studies that did justify

their effect size found that the majority of studies simply cited Cohen’s suggested values

(Bakker et al., 2020). Relying on these rules of thumb can lead to strange interpretations, such

as paradoxes where even incredibly small effect sizes (using Cohen’s rule of thumb) can be

meaningful. Abelson (1985) found that an R2 of .003 was the effect size of the most significant

characteristic predicting baseball success (batting average). In context, then, an R2 of .003 is

clearly meaningful, so it is important to interpret effect sizes in context rather than apply broad

generalisations. If you must rely on effect size distributions, there are articles which are sub-field

specific. For example, Gignac and Szodorai (2016) collated effects in individual differences

research and Szucs and Ioannidis (2017, 2021) outlined effects in cognitive neuroscience

research.

Effect size distributions can be useful to calibrate your understanding of effect sizes in

different areas but they are not without fault. Panzarella et al. (2021) demonstrated that in the

studies that cited effect size distributions, most used them to directly interpret the effect sizes

they observed in their study (e.g., “in this study we found a ‘large’ effect, which means…”).

However, as seen in Abelson’s paradox, small effects in one context can be meaningful in

another context. Effect size distributions can help to understand the magnitude of effect sizes

within and across subject areas, but comparing your observed effect size to an amalgamation of

effects across all of psychology leads to a loss in nuance. If you have no other information,

effect size distributions can help to inform your smallest effect size of interest, but when it comes

to interpretation it is important to put your effect size in context compared to studies

investigating a similar research question.

With these strategies in mind, it is important to consider what represents the smallest

effect size of interest for your specific study. It is the justification that is important as there is no

single right or wrong answer. Power analysis is always a compromise between designing an

informative study and designing a feasible study for the resources at your disposal. You could

always set your effect size to d = 0.05, but the sample size required would often be

https://www.zotero.org/google-docs/?Ewtkqe
https://www.zotero.org/google-docs/?XRsauV
https://www.zotero.org/google-docs/?Llxzg3
https://www.zotero.org/google-docs/?1Xe2lD
https://www.zotero.org/google-docs/?jPa4nS
https://www.zotero.org/google-docs/?p6PYuI
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unachievable and effects this small may not be practically meaningful. Therefore, you must

explain and justify what represents the smallest effect size of interest for your area of research.

Sample size
The final input you can justify is your sample size. You may be constrained by resources or the

population you study, meaning you know the sample size and want to know what effect sizes

you could detect in a sensitivity power analysis.

Lakens (2022) outlined that two strategies for sample size justification include measuring

an entire population and resource constraints. If you study a specific population, such as

participants with a rare genetic condition, you might know there are only 30 participants in your

country which you regularly study, placing a limit on the sample size you can recruit.

Alternatively, in many student projects, the time or money available to conduct research is

limited, so the sample size may be influenced by resource constraints. You might have £500 for

recruitment and if you pay them £10 for an hour of their time, you only have enough money for

50 participants.

In both scenarios, you start off knowing what your sample size will be. This does not

mean you can ignore statistical power, but it changes from calculating the necessary sample

size to detect a given effect size, to what effect size you can detect with a given sample size.

This allows you to decide whether the study you plan on conducting is informative, or if it would

be uninformative, you would have the opportunity to change the design or use more precise

measures to produce larger effect sizes.

Part Three: Power Analysis using jamovi
For this tutorial, we will be using the open source software jamovi (2021). Although it currently

offers a limited selection for power analysis, it is perfect for an introduction for three reasons.

First, it is free and accessible on a wide range of devices. Historically, G*Power (Faul et al.,

2009) was a popular choice, but it is no longer under active development which presents

accessibility issues. Second, the output in jamovi contains written guidance on how to interpret

the results and emphasises underrepresented concepts like power existing along a curve.

Finally, Bakker et al. (2020) observed authors often fail to provide enough information to

reproduce their power analysis. In jamovi, you save your output and options in one file, meaning

https://www.zotero.org/google-docs/?l2ylWb
https://www.zotero.org/google-docs/?HEXxhE
https://www.zotero.org/google-docs/?Tx6n0A
https://www.zotero.org/google-docs/?Tx6n0A
https://www.zotero.org/google-docs/?GsCvz4
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you can share this file to be fully reproducible. Combined, these features make jamovi the

perfect software to use in this tutorial.

To download jamovi to your computer, navigate to the download page

(https://www.jamovi.org/download.html) and install the solid version to be the most stable. Once

you open jamovi, click Modules (in the top right, Figure 1a in red), click jamovi library (Figure 1a

in blue), and scroll down in the Available tab until you see jpower and click INSTALL (Figure 1b

in green). This is an additional module written by Morey and Selker which appears in your

jamovi toolbar.

Figure 1
Opening jamovi and managing your additional modules. Click modules (a in red), jamovi library
(a in blue) to manage your modules, and scroll down to install jpower (b in green) to be able to
follow along to the tutorial.

In the following sections, imagine we are designing a study to build on Irving et al. (2022)

who tested an intervention to correct statistical misinformation. Participants read an article about

a new fictional study where one passage falsely concludes watching TV causes cognitive

decline. In the correction group, participants receive an extra passage where the fictional

researcher explains they only reported a correlation, not a causal relationship. In the

no-correction group, the extra passage just explains the fictional researcher was not available to

https://www.jamovi.org/download.html
https://www.zotero.org/google-docs/?xZXHe7
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comment. Irving et al. then tested participants’ comprehension of the story and coded their

answers for mistaken causal inferences. They expected participants in the correction group to

make fewer causal inferences than those in the no-correction group, and found evidence

supporting this prediction with an effect size equivalent to Cohen’s d = 0.64, 95% CI = [0.28,

0.99]. Inspired by their study, we want to design an experiment to correct another type of

misinformation in articles.

Irving et al. (2022) themselves provide an excellent example of explaining and justifying

the rationale behind their power analysis, so we will walk through the decision making process

and how it changes the outputs. For our smallest effect size of interest, our starting point is the

estimate of d = 0.64. However, it is worth consulting other sources to calibrate our

understanding of effects in the area, such as Irving et al. citing a meta-analysis by Chan et al.

(2017). For debunking, the average effect across 30 studies was d = 1.14, 95% CI = [0.68,

1.61], so we could use the lower bound of the confidence interval, but this may still represent an

overestimate. Irving et al. used the smallest effect (d = 0.54) from the studies most similar to

their design which was included in the meta-analysis. As a value slightly smaller than the other

estimates, we will also use this as the smallest effect of interest for our study.

Now we have settled on our smallest effect size of interest, we will use d = 0.54 in the

following demonstrations. We start with a priori and sensitivity power analysis for two

independent samples, exploring how the outputs change as we alter inputs like alpha, power,

and the number of tails in the test. For each demonstration, we explain how you can

transparently report the power analysis to your reader. We then repeat the demonstrations for

two dependent samples to show how you require fewer participants when the same participants

complete multiple conditions instead of being allocated to separate groups.

Two Independent samples

A priori power analysis in independent samples
If you open jamovi, you should have a new window with no data or output. For an independent

samples t-test, make sure you are on the analyses tab, click on jpower, and select Independent

Samples T-Test. This will open the window shown in Figure 2.

https://www.zotero.org/google-docs/?gyyPBv
https://www.zotero.org/google-docs/?gyyPBv
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Figure 2
Default settings for an independent samples t-test using the jpower module in jamovi.

We will start by calculating power a priori for an independent samples t-test. On the left

side, you have your inputs and on the right side, you have the output from your choices.

Depending on the type of analysis you select under Calculate, one of the inputs will be blanked

out in grey. This means it is the parameter you want as the output on the right side and you will

not be able to edit it. To break down the main menu options in this window:

● Calculate: Your choice of calculating one of (a) the minimum number of participants (N

per group) needed for a given effect size, (b) what your power is given a specific effect

size and sample size, or (c) the smallest effect size that you could reliably detect given a

fixed sample size.

● Minimally-interesting effect size: This is the standardised effect size known as Cohen’s d.

Here we can specify our smallest effect size of interest.

● Minimum desired power: This is our long-run power. Power is traditionally set at .80

(80%) but some researchers argue that this should be higher at .90 (90%) or .95 (95%).

The default setting in jpower is .90 (90%) but see part two for justifying this value.

● N for group 1: This input is currently blanked out as in this example we are calculating

the minimum sample size, but here you would define how many participants are in the

first group.
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● Relative size of group 2 to group 1: If this is set to 1, the sample size is calculated by

specifying equal group sizes. You can specify unequal group sizes by changing this

input. For example, 1.5 would mean group 2 is 1.5 times larger than group 1, whereas

0.5 would mean group 2 is half the size of group 1.

● α (type I error rate): This is your long-run type one error rate which is conventionally set

at .05. See part two for strategies on justifying a different value.

● Tails: Is the test one- or two-tailed? You can specify whether you are looking for an effect

in just one direction or you would be interested in any significant result.

For this example, our smallest effect size of interest will be d = 0.54 following our

discussion of building on Irving et al. (2022). We can enter the following inputs: effect size d =

0.54, alpha = .05, power = .90, relative size of group 2 to group 1 = 1, and two-tailed. You

should get the output in Figure 3. The first table “A Priori Power Analysis” tells us that to detect

our smallest effect size of interest, we would need two groups of 74 participants (N = 148) to

achieve 90% power in a two-tailed test.

Figure 3
A priori power analysis results for a two-tailed independent samples t-test using d = 0.54 as the
smallest effect size of interest. We would need 74 participants per group (N = 148) for 90%
power.
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In jamovi, it is clear how statistical power exists along a curve. The second table in

Figure 3 “Power by Effect Size” shows us what range of effect sizes we would likely detect with

74 participants per group. We would have 80-95% power to detect effect sizes between d =

0.46-0.60. However, we would only have 50-80% power to detect effects between d = 0.32-0.46.

This shows our smallest effect size of interest could be detected with 90% power, but smaller

effects have lower power and larger effects would have higher power.

This is also reflected in the power contour plot, which is reported by default (Figure 4). If

you cannot see the plot, make sure the “Power contour plot” option is ticked under Plots and

scroll down in the Results window as it is included at the bottom. The level of power you choose

is the black line that curves from the top left to the bottom right. For our effect size, we travel

along the horizontal black line until we reach the curve, and the down arrow tells us we need 74

participants per group. For larger effects as you travel up the curve, we would need fewer

participants and for smaller effects down the curve we would need more participants.

Figure 4
A power contour to show how as the effect size decreases (smaller values on the y-axis), the
number of participants required to detect the effect increases (higher values on the x-axis). Our
desired level of 90% power is indicated by the black curved line.
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Now that we have explored how many participants we would need to detect our smallest

effect size of interest, we can alter the inputs to see how the number of participants changes.

Wherever possible, it is important to perform a power analysis before you start collecting data,

as you can explore how changing the inputs impacts your sample size.

● Tail(s): If you change the number of tails to one, this decreases the number of

participants in each group from 74 to 60. This saves a total of 28 participants (14 in each

group). If your experiment takes 30 minutes per participant, that is saving you 14 hours’

worth of work or cost while still providing your experiment with sufficient power.

● α: If you change α to .01, we would need 104 participants in each group (for a two-tailed

test), 60 more participants than our first estimate and 30 more hours of data collection.

● Minimum desired power: If we decreased power to the traditional 80%, we would need

55 participants per group (for a two-tailed test; alpha = .05). This would be 38 fewer

participants than our first estimate, saving 19 hours of data collection.

It is important to balance creating an informative experiment with the resources

available. Therefore, it is crucial that, where possible, you perform a power analysis in the

planning phase of a study as you can make these kinds of decisions before you recruit any

participants. You can make fewer type one (decreasing alpha) or type two (increasing power)

errors, but you must recruit more participants.

In the original power analysis by Irving et al. (2022), they used inputs of d = 0.54, alpha

= .05, power = .95, and one-tailed for a directional prediction, and they aimed for two groups of

75 (N = 150) participants. In these demonstrations, we are walking through changing the inputs

to see how it affects the output, but you can look at their article for a good example of justifying

and reporting a power analysis.

How can this be reported?
Bakker et al. (2020) warned that only 20% of power analyses contained enough information to

be fully reproducible. To report your power analysis, the reader needs the following four key

pieces of information:

● The type of test being conducted,

● The software used to calculate power,

● The inputs that you used, and

● Why you chose those inputs.

https://www.zotero.org/google-docs/?xvDCw2
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For the original example in Figure 3, we could report it like this:

“To detect an effect size of Cohen’s d = 0.54 with 90% power (alpha = .05, two-tailed),

the jpower module in jamovi suggests we would need 74 participants per group (N =

148) for an independent samples t-test. Similar to Irving et al. (2022), the smallest effect

size of interest was set to d = 0.54, but we used a two-tailed test as we were less certain

about the direction of the effect.”

This provides the reader with all the information they would need in order to reproduce

the power analysis and ensure you have calculated it accurately. The statement also includes

your justification for the smallest effect size of interest. Please note there is no single ‘correct’

way to report a power analysis. Just be sure that you have the four key pieces of information.

Sensitivity power analysis in independent samples
Selecting the smallest effect size of interest for an a priori power analysis would be an effective

strategy if you wanted to calculate how many participants you need when designing your study.

Now imagine you already knew the sample size or had access to a population of a known size.

In this scenario, you would conduct a sensitivity power analysis. This would tell you what effect

sizes your study would be powered to detect for a given alpha, power, and sample size. This is

helpful for interpreting your results as you can outline what effect sizes your study was sensitive

to and which effects would be too small for you to reliably detect. If you change the “Calculate”

input to Effect size, “Minimally-interesting effect size” will now be greyed out.

Imagine we had finished collecting data and we knew we had 40 participants in each

group but did not conduct a power analysis when designing the study. If we enter 40 for N for

group 1, 1 for relative size of group 2 to group 1, alpha = .05, power = .90, and two-tailed, we

get the output in Figure 5.
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Figure 5
Sensitivity power analysis results for an independent samples t-test when there is a fixed
sample size of 40 per group (N = 80). We would be able to detect an effect size of d = 0.73 with
90% power.

The first table in Figure 5 “A Priori Power Analysis” tells us that the study is sensitive to

detect effect sizes of d = 0.73 with 90% power (note, the table is still referred to as a priori,

despite it being a sensitivity power analysis. This is a quirk of the software. Do not worry, it is

running a sensitivity analysis). This helps us to interpret the results if we did not plan with power

in mind or we had a rare sample. The second table in Figure 5 “Power by Effect Size” shows we

would have 80-95% power to detect effect sizes between d = 0.63-0.82, but 50-80% power to

detect effect sizes between d = 0.44-0.63. As the effect size gets smaller, there is less chance of

detecting it with 40 participants per group, but we would have greater than 90% power to detect

effect sizes larger than d = 0.73.

To acknowledge how power exists along a curve, we also get a second type of graph.

We now have a power curve (Figure 6) with the x-axis showing the potential effect size and the

y-axis showing what the power would be for that potential effect size. If this plot is not visible in

the output, make sure you have “Power curve by effect size” ticked in the Plots options. This
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tells us how power changes as the effect size increases or decreases, with our other inputs held

constant.

Figure 6
A power curve to show how as the effect size decreases (smaller values on the x-axis), we
would have less statistical power (lower values on the y-axis) for our fixed sample size. Our
desired level of 90% power is indicated by the intersection of the black horizontal line and the
black curved line.

At 90% power, we can detect effect sizes of d = 0.73 or larger. If we follow the black

curve towards the bottom left, power decreases for smaller effect sizes. This shows that once

we have a fixed sample size, power exists along a curve for different effect sizes. When

interpreting your results, it is important you have sufficient statistical power to detect the effects

you do not want to miss out on. If the sensitivity power analysis suggests you would miss effects

you would consider meaningful, you would need to calibrate your expectations of how

informative your study is.

How can this be reported?
We can also state the results of a sensitivity power analysis in a report. If you did not perform an

a priori power analysis, you could report this in the method to comment on your final sample

size. If you are focusing on interpreting how informative your results are, you could explore it in

the discussion. Much like an a priori power analysis, there are key details that must be included

to ensure it is reproducible and informative:
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● The type of test you conducted;

● Which software you used to conduct the power analysis;

● Your inputs that you used, and;

● What the smallest reliably detectable effect size is.

For the example in Figure 5, you could report:

“The jpower module in jamovi suggests an independent samples t-test with 40

participants per group (N = 80) would be sensitive to effects of Cohen’s d = 0.73 with

90% power (alpha = .05, two-tailed). This means the study would not be able to reliably

detect effects smaller than Cohen’s d = 0.73”.

As with an a priori power analysis, there are multiple ways you can describe the sensitivity

power analysis with the example above demonstrating one way of doing so. The main goal is to

communicate the four key pieces of information to ensure your reader could reproduce the

sensitivity power analysis and confirm you calculated it accurately.

Two dependent samples

A priori power analysis in dependent samples
Now we will demonstrate how you can conduct a power analysis for a within-subjects design.

This time, you need to select Paired Samples T-Test from the jpower menu to get a window like

Figure 7.
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Figure 7
Default settings for a paired samples t-test using the jpower module in jamovi.

The inputs are almost identical to what we used for the independent samples t-test, but

this time we only have four inputs as we do not need to worry about the ratio of group 2 to group

1. In a paired samples t-test, every participant must contribute a value for each condition. If we

repeat the inputs from our independent samples t-test a priori power analysis (d = 0.54, alpha =

.05, power = .90, two-tailed), your window should look like Figure 8.
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Figure 8
A priori power analysis results for a paired samples t-test using d = 0.54 as the smallest effect
size of interest. We would need 39 participants for 90% power.

The table “A Priori Power Analysis” suggests we would need 39 participants to achieve

90% power to detect our smallest effect size of interest (d = 0.54) inspired by Irving et al. (2022).

We would need 109 fewer participants than our first estimate, saving 54.5 hours of data

collection assuming your experiment takes 30 minutes. We also have the second table “Power

by Effect Size” to show how power changes for different effect size ranges.

Before we move on to how to report the power analysis, we will make a note of the

important lesson that using a within-subjects design will always save you participants. The

reason for this is that instead of every participant contributing just one value (which may have

measurement error because of extraneous variables), they are contributing two values (one to

each condition). The error caused by many of the extraneous variables (such as their age, eye

sight, strength, or any other participant-specific variable that might cause error) are the same for

both conditions for the same person. The less error in our measurements there is, the more sure

we can be that the results we see are due to our manipulation. As within-participants designs

lower the amount of error compared to between-participants design, they need fewer

participants to achieve the same amount of power. The amount of error accounted for in a
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within-participants design means you need approximately half the number of participants you

need to detect the same effect size in a between-subjects design (Lakens, 2016b). When you

are designing a study, think about whether you could convert the design to within-subjects to

make it more efficient.

While it helps save on participants, it is not always possible, or practical, to use a

within-subjects design. For example, in the experiment we are designing here, participants are

shown two versions of a news story with a subtle manipulation. A between-subjects design

might be a better choice as participants are randomised into one of two groups and they do not

see the alternative manipulation. This means participants would find it more difficult to work out

the aims of the study and change their behaviour. In a within-subjects design you would need at

least two versions of the news story to create one ‘correction’ condition and one ‘no correction’

condition. This means participants would experience both conditions and they could work out

the aims of the study and potentially change their behaviour. In addition, you would need to

ensure the two versions of the news story were different enough that participants did not simply

provide the same answer, but comparable enough to ensure you are not introducing a

confound. This is another example of where thinking of statistical power in the design stage of

research is most useful. You can decide whether a within- or between-subjects design is best

suited to your procedure.

How can this be reported?
For the example in Figure 8, you could report:

“To detect an effect size of Cohen’s d = 0.54 with 90% power (alpha = .05, two-tailed),

the jpower module in jamovi suggests we would need 39 participants for a paired

samples t-test. Similar to Irving et al. (2022), the smallest effect size of interest was set

to d = 0.54, but we used a two-tailed test as we were less certain about the direction of

the effect.”.

Sensitivity power analysis in dependent samples
If you change “Calculate” to Effect size, we can see what effect sizes a within-subjects design is

sensitive enough to detect. Imagine we sampled from 30 participants without performing an a

priori power analysis. Setting the inputs to power = .90, N = 30, alpha = .05, and two-tailed; you

should get the output in Figure 9.

https://www.zotero.org/google-docs/?ksu7gp
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Figure 9
Sensitivity power analysis results for a paired samples t-test when there is a fixed sample size of
30 participants. We would be able to detect an effect size of d = 0.61 with 90% power.

The “A Priori Power Analysis” table shows us that the design would be sensitive to

detect an effect size of d = 0.61 with 90% power using 30 participants. This helps us to interpret

the results if we did not plan with power in mind or had a limited sample. The second table in

Figure 9 “Power by Effect Size” shows we would have 80-95% power to detect effect sizes

between d = 0.53-0.68, but 50-80% power to detect effect sizes between d = 0.37-0.53. As the

effect size gets smaller, there is less chance of detecting it with 30 participants, but we would

have greater than 90% power to detect effect sizes larger than d = 0.61.

How can this be reported?
For the example in Figure 9, you could report:

“The jpower module in jamovi suggests a paired samples t-test with 30 participants

would be sensitive to effects of Cohen’s d = 0.61 with 90% power (alpha = .05,

two-tailed). This means the study would not be able to reliably detect effects smaller than

Cohen’s d = 0.61”.



Version 2: Updated 04/04/2022

Conclusion
In this tutorial, we demonstrated how to perform a power analysis for both independent and

paired samples t-tests using the jpower module in jamovi. We outlined two of the most useful

types of power analysis: (1) a priori, for when you want to know how many participants you need

to detect a given effect size, and (2) sensitivity, for when you want to know what effect sizes you

can detect with a given sample size. We also emphasised the key information you must report

to ensure power analyses are reproducible. Our aim was to provide a beginner’s tutorial to learn

the fundamental concepts of power analysis, so you can build on these lessons and apply them

to more complicated designs.

There are three key lessons to take away from this tutorial. First, you can plan to make

fewer type one (decreasing alpha) or type two (increasing power) errors, but it will cost more

participants assuming you want to detect the same effect size. Second, using a one-tailed test

offers a more severe test of a hypothesis and requires fewer participants to achieve the same

level of power. Finally, using a within-subjects design requires fewer participants than a

between-subjects design.

Power analysis is a reflective process, and it is important to keep these three lessons in

mind when designing your study. Designing an informative study is a balance between your

inferential goals and the resources available to you (Lakens, 2022). That is why we framed

changes in the inputs around how many hours of data collection your study would take

assuming it lasted 30 minutes. You will rarely have unlimited resources as a researcher, either

from the funding body supporting your research, or from the number of participants in your

population of interest. Planning your study with statistical power in mind provides you with the

most flexibility as you can make decisions, like considering a one-tailed test or using a

within-subjects design, before you can preregister and conduct your study.

The number of participants required for a sufficiently powered experiment might have

surprised you. Depending on the inputs and design, we needed between 39 and 208

participants to detect the same smallest effect size of interest (d = 0.54) to build on Irving et al.

(2022). For resource-limited studies like student dissertations or participant-limited studies on

rare populations, getting so many participants may be unachievable. As a result, changing to a

within-participants design, or changing the other inputs might be needed, where possible. In

https://www.zotero.org/google-docs/?VgDLOF
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circumstances where within-participants designs are not possible, and changing inputs (e.g.,

alpha) does not work, you can still conduct the study, providing you adjust your expectations

and make the results available. If you do make your results available, while your sample size

may be too small in isolation to detect your smallest effect size of interest, your results can then

be collated into meta-analyses providing they are available to other researchers.

Alternative solutions include studying larger effect sizes, and/or focusing on ‘team

science’. Cohen (1973) quipped that instead of chasing smaller effects, psychology should

emulate older sciences by creating larger effects through stronger manipulations or using more

precise measurements. Alternatively, if you cannot conduct an informative study individually, you

could pool resources and engage in team science. For example, student dissertations can

benefit from projects where multiple students work together, with each student contributing one

component and collecting data for a larger network/project (Creaven et al., 2021; Wagge et al.,

2019), or labs across the world pool their resources together (Moshontz et al., 2018). In the

past, students have been encouraged to work on a project by themselves to gain experience

conducting a science experiment by themselves. However, encouraging students to work in

groups may now be just as useful, as such group work reflects the paradigm shift towards ‘team

science’ seen in the wider research community in recent years (Wuchty et al., 2007).

To conclude our tutorial, we present a list of resources you can refer to for additional

applications of power analysis. We limited our tutorial to two independent samples and two

paired samples for maximum accessibility, so it is important to outline resources for additional

designs.

G*Power

Although G*Power (Faul et al., 2009) is no longer in active development, it supports power

analysis for a range of statistical tests, such as correlation, non-parametric tests, and ANOVA.

There is a longer companion guide to this manuscript that walks through power analysis for

correlation and ANOVA (Bartlett, 2021).

Superpower

G*Power can calculate power for ANOVA models, but it does not accurately scale to factorial

ANOVA and pairwise comparisons. To target these limitations, Lakens and Caldwell (2021)

https://www.zotero.org/google-docs/?3mIdh8
https://www.zotero.org/google-docs/?CwBCqZ
https://www.zotero.org/google-docs/?CwBCqZ
https://www.zotero.org/google-docs/?bMgEWN
https://www.zotero.org/google-docs/?OL3vh2
https://www.zotero.org/google-docs/?UJQy7S
https://www.zotero.org/google-docs/?c93JWT
https://www.zotero.org/google-docs/?7zf32g
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developed an R package and Shiny app called Superpower. Superpower provides more

flexibility and scales up to factorial ANOVA as you enter means and standard deviations per cell

for your smallest effect sizes of interest. For guidance, see our companion guide for the Shiny

app (Bartlett, 2021) and the authors’ ebook for the R package (Caldwell et al., 2021).

pwr R package

If you use R, the pwr package (Champely et al., 2020) supports many of the same tests as

G*Power such as t-tests, correlation, and regression. The arguments are also similar to

G*power’s inputs, such as omitting one of numerator and denominator degrees of freedom,

effect size as f2, alpha, or power for your desired output.

Simulation

Packages like pwr are user-friendly as they only require you to define inputs to calculate power

analytically, but one of the benefits of a programme like R is the flexibility to simulate your own

bespoke power analysis. The starting point is simulating a dataset with known attributes - like

the mean and standard deviation of each group or correlation between variables - and applying

your statistical test. You then repeat this simulation process many times and store the p-values

from each iteration. As probability in frequentist statistics relates to long-run frequencies, you

calculate what percentage of those p-values were lower than your alpha, providing your

statistical power. See Quandt (2020) and Sleegers (2021) for demonstrations of simulation

applied to power analysis in R and the summer school workshop series organised by PsyPAG

(https://simsummerschool.github.io/).

Simulation approaches also scale to more advanced techniques such as accounting for

the number of trials in a task instead of solely the number of participants (Baker et al., 2021) or

mixed-effects models, which are growing in popularity in psychology. Power analysis procedures

for mixed effects models rely on simulation, so see Brysbaert and Stevens (2018), DeBruine

and Barr (2021), and Kumle et al. (2021) for guidance.

https://www.zotero.org/google-docs/?a28PoH
https://www.zotero.org/google-docs/?MzRFWx
https://www.zotero.org/google-docs/?1iJdXk
https://www.zotero.org/google-docs/?E7qtgk
https://www.zotero.org/google-docs/?5fAKKH
https://simsummerschool.github.io/
https://www.zotero.org/google-docs/?4sftM9
https://www.zotero.org/google-docs/?0apjum
https://www.zotero.org/google-docs/?NFIVwm
https://www.zotero.org/google-docs/?NFIVwm
https://www.zotero.org/google-docs/?eOQF1s
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