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Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

When a researcher aims to test hypotheses with an anal-
ysis of variance (ANOVA), the sample size of the study 
should be justified on the basis of the statistical power 
of the test. The statistical power of a test is the probabil-
ity of rejecting the null hypothesis, given a specified 
effect size, alpha level, and sample size. When the sta-
tistical power of a test is low, there is a high probability 
of a Type II error, or concluding there is no effect when 
a true effect exists in the population of interest.

Several excellent resources that explain power analy-
ses are available. These include books (Aberson, 2019; 
Cohen, 1988), general reviews (Maxwell et  al., 2008), 
and practical primers (Brysbaert, 2019; Perugini et al., 
2018). Whereas power analyses for individual compari-
sons are relatively easy to perform, power analyses for 
factorial ANOVA designs are a bigger challenge. There 
is a range of power-analysis software available, such as 

G*Power (Faul et  al., 2007), MorePower (Campbell & 
Thompson, 2012), PANGEA (Westfall, 2015a), pwr2ppl 
(Aberson, 2019), APRIOT (Lang, 2017), PASS (NCSS LLC, 
Kaysville, UT), and SAS (SAS Institute, Cary, NC). These 
tools differ in their focus (e.g., sequential analyses for 
APRIOT, linear mixed models for PANGEA), the tests 
they provide power analyses for (e.g., whether they 
allow violations of the homogeneity assumption or 
unequal sample sizes, whether they can be used with 
analysis of covariance [ANCOVA] designs), and the input 
they require (e.g., effect sizes, raw data, or means, stan-
dard deviations, correlations, and sample sizes).1 Despite 
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Abstract
Researchers often rely on analysis of variance (ANOVA) when they report results of experiments. To ensure that a study 
is adequately powered to yield informative results with an ANOVA, researchers can perform an a priori power analysis. 
However, power analysis for factorial ANOVA designs is often a challenge. Current software solutions do not allow 
power analyses for complex designs with several within-participants factors. Moreover, power analyses often need ηp

2
 

or Cohen’s f as input, but these effect sizes are not intuitive and do not generalize to different experimental designs. We 
have created the R package Superpower and online Shiny apps to enable researchers without extensive programming 
experience to perform simulation-based power analysis for ANOVA designs of up to three within- or between-participants 
factors. Predicted effects are entered by specifying means, standard deviations, and, for within-participants factors, the 
correlations. The simulation provides the statistical power for all ANOVA main effects, interactions, and individual 
comparisons. The software can plot power across a range of sample sizes, can control for multiple comparisons, and 
can compute power when the homogeneity or sphericity assumption is violated. This Tutorial demonstrates how to 
perform a priori power analysis to design informative studies for main effects, interactions, and individual comparisons 
and highlights important factors that determine the statistical power for factorial ANOVA designs.
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this wide range of software options, in our experience 
researchers often struggle to perform power analyses for 
ANOVA designs.

In this article, we introduce the Superpower R package 
and accompanying Shiny apps, which use simulations 
to perform power analyses for factorial ANOVA designs. 
We designed Superpower with the goal for it to be free, 
to be available both as R functions and as an online app, 
and to easily allow researchers to perform power analy-
ses for a wide range of ANOVA designs. Compared to 
G*Power, the pwr R package (Champely, 2020), and the 
pwr2ppl R package, Superpower can compute power for 
a wider range of designs (e.g., up to three factors with 
999 levels). Compared to PANGEA, G*Power, and More-
Power, Superpower requires input that we believe is 
somewhat more intuitive, as users enter means, standard 
deviations, and correlations, instead of effect sizes and 
variance components. A unique feature of Superpower 
is that it allows users to easily correct for multiple com-
parisons in exploratory ANOVA designs, and that it auto-
matically provides the statistical power for all main 
effects, interactions, and simple comparisons for a speci-
fied ANOVA design. The online manual at http://
arcaldwell49.github.io/SuperpowerBook (Caldwell 
et al., 2020) provides detailed examples of power analy-
ses for a variety of designs (ranging from one-way ANOVA 
designs to three-way interactions in mixed designs, mul-
tivariate analyses of variance [MANOVAs], and situations 
in which ANOVA assumptions are violated), as well as 
examples validating power analyses in Superpower 
against existing software. A current limitation of Super-
power is that it cannot compute power for ANCOVAs or 
linear mixed models.

Superpower allows researchers to perform simulation-
based power analyses without having extensive pro-
gramming knowledge. By simulating data for factorial 
designs with specific parameters, researchers can gain 
a better understanding of the factors that determine the 
statistical power of an ANOVA and learn how to design 
well-powered experiments. After a short introduction to 
statistical power focusing on the F test, we illustrate 
through simulations how the power of factorial ANOVA 
designs depends on the pattern of means across condi-
tions, the number of factors and levels, the sample size, 
and whether the alpha level needs to be controlled for 
multiple comparisons.

Disclosures

The code to reproduce the analyses reported in this 
article has been made publicly available via OSF and 
can be accessed at https://osf.io/pn8mc/. An online 
manual for Superpower can be accessed at https://aaron 
caldwell.us/SuperpowerBook/. In addition, there are 
shiny apps for the ANOVA_exact (https://arcstats.io/

shiny/anova-exact/) and ANOVA_power (https://arcstats 
.io/shiny/anova-power/) functions mentioned throughout 
this article. The Superpower R package is available on 
CRAN (https://CRAN.R-project.org/package=Superpower), 
and experimental versions of the package are available 
on our GitHub repository (https://github.com/arcaldwell 
49/Superpower).

A Basic Example

Imagine that we perform a study in which participants 
interact with an artificial voice assistant who sounds 
either cheerful or sad. We measure how much 80 par-
ticipants in each condition enjoy interacting with the 
voice assistant by collecting responses on a line scale 
(coded continuously from −5 to 5). We observe a mean 
of 0 in the sad condition and a mean of 1 in the cheerful 
condition, and the estimated standard deviation is 2. 
After we submit the manuscript for publication, review-
ers ask us to add a study with a neutral control condi-
tion to examine whether cheerful voices increase 
enjoyment or sad voices decrease enjoyment (or both). 
Depending on what the mean enjoyment in the neutral 
condition in the population is, what sample size would 
we need for a high-powered test of the expected pattern 
of means? A collaborator suggests switching from a 
between-participants design to a within-participants 
design to collect data more efficiently. What impact will 
switching to a within-participants design have on the 
required sample size? The effect size observed in the 
first study is sometimes referred to as a “medium” effect 
size, according to the benchmarks by Cohen (1988). 
Does it make sense to perform an a priori power analysis 
for a medium effect size if we add a third between-
participants condition or switch to a within-participants 
ANOVA design? And if we justify the sample size on the 
basis of the power for the main effect for the ANOVA, will 
the study also have sufficient statistical power for the 
independent comparisons between conditions (or vice 
versa)? Before we answer these questions, let us review 
some of the basic concepts of statistical power and exam-
ine how power calculations are typically performed.

Calculating Power for ANOVA Designs

Let us consider the two-condition design described ear-
lier, in which enjoyment is measured among 80 partici-
pants per condition who interact with a cheerful or sad 
voice assistant. We can test the difference between two 
means with a t test or a one-way ANOVA, and the two 
tests are mathematically equivalent. To perform an a 
priori power analysis, researchers need to specify an 
effect size for the alternative hypothesis (for details on 
effect-size calculations, see Box 1). Figure 1 and Figure 
2 show the distributions of the effect sizes—Cohen’s d 
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for the t test and ηp
2  for the F test—that should be 

observed when there is no effect and when the alterna-
tive hypothesis is true (d = 0.5 and ηp

2  = .0588, respec-
tively).2 In each figure, the light-gray areas under the 
distribution for the null hypothesis mark the observed 
effect sizes that would lead to a Type I error (observing a 
statistically significant result if the null hypothesis is true), 
and the dark-gray area under the curve for the distribution 
under the alternative hypothesis marks the observed effect 
sizes that would lead to a Type II error (observing a non-
significant result when there is a true effect).

A test result is statistically significant when the p value 
is smaller than the alpha level or when the test statistic 

(e.g., an F value) is larger than a critical value. For a 
given sample size, we can also calculate a critical effect 
size, and a result is statistically significant if the observed 
effect size is more extreme than the critical effect size. 
Given the sample size of 80 participants per group, 
observed effects are statistically significant when d  is 
larger than 0.31 in a t test or η p

2
 is larger than .024 in an 

F test (see the vertical dashed lines in Fig. 1 and Fig. 2). 
The goal of an a priori power analysis is to determine 
the sample size required, in the long run, to observe a 
p value smaller than the chosen alpha level with a pre-
determined probability, given an assumption about the 
true population effect size. To calculate the sample size 

Box 1.  Formulas for Effect Sizes for Analysis of Variance Designs

For two independent groups, the t statistic can easily be translated to the F statistic: F = t2. Cohen’s d, a standardized 
effect size, is calculated by dividing the difference between means by the pooled standard deviation, or

	 d
x x

p

=
−1 2

σ
. 	 (1)

The generalization of Cohen’s d to more than two groups is Cohen’s f, which is the standard deviation of the 
means divided by the standard deviation (Cohen, 1988), or

	 f x=
σ
σ

, 	 (2)

where for equal sample sizes,
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For two groups, Cohen’s f is half as large as Cohen’s d, or f = ½d. In power-analysis software, the input is 
often ηp

2 , which can be converted into Cohen’s f:
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Likewise, Cohen’s f can be converted into ηp
2 :

	 ηp

f

f
2

2

2 1
=

+
. 	 (5)

Power calculations rely on the noncentrality parameter (λ). In a between-participants one-way analysis of 
variance, λ is calculated as

	 λ = ×f 2 N , 	 (6)

where f is Cohen’s f and N is the total sample size.
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required to reach a desired statistical power, one has to 
specify the alternative hypothesis and the alpha level. 
Given λ (the noncentrality parameter, which together 
with the degrees of freedom specifies the shape of the 
expected effect-size distribution under a specified alter-
native hypothesis, illustrated by the black curves in Figs. 
1 and 2), we can calculate the area under the curve that 
is more extreme than the critical effect size (i.e., in Fig. 
2, the area to the right of the critical effect size). Under 
the alternative hypothesis that the true population effect 
size is 0.5 (d) or .0588 (ηp

2
), if data are collected from 

80 participants in each condition, and an alpha of .05 is 
used, in the long run 88.16% of the tests will yield an 
effect size that is larger than the critical effect size.

Power Calculations in Superpower

Superpower can be used in R (run install.
packages("Superpower")) or in the online Shiny 
apps (see https://arcstats.io/shiny/anova-exact/ and 

https://arcstats.io/shiny/anova-power/). The code 
underlying the Superpower R package and the Shiny 
apps generates data for each condition in the design and 
performs an ANOVA and t tests for all comparisons 
between conditions. The simulation can be based on 
any design specified using the ANOVA_design func-
tion, the result of which is stored and passed on to either 
of the two functions to compute power. Users specify 
the design by indicating the number of levels for each 
factor (e.g., 2) and whether the factor is manipulated 
within (w) or between (b) participants. Superpower can 
handle up to three factors (separated by *). A 2b design 
means a single factor with two groups is manipulated 
between participants, whereas a 2b*2w design is a 2 × 
2 mixed ANOVA in which the first factor is manipulated 
between and the second within participants. Users also 
specify the sample size per condition (n), the predicted 
pattern of means across all conditions, the expected 
standard deviation, and the correlation between vari-
ables (for within-participants designs). To make it easier 
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Fig. 1.  Distribution of Cohen’s d under the null hypothesis (gray curve) and the alternative hypoth-
esis assuming d = 0.5 in the population (black curve), given n = 80 per condition. The shaded areas 
indicate the observed effect sizes that would lead to Type I (light gray) and Type II (dark gray) 
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indicate the observed effect sizes that would lead to Type I (light gray) and Type II (dark gray) 
errors, and the vertical lines indicate the critical effect sizes. See the text for additional explanation.

https://arcstats.io/shiny/anova-exact/
https://arcstats.io/shiny/anova-power/


Superpower	 5

to interpret the output, users can specify factor names 
and names for each factor’s levels (e.g., condition, 
cheerful, sad).

An example of the R code is
design_result <- ANOVA_design(
  design = "2b", n = 80,
  mu = c(1, 0), sd = 2,
  labelnames = c("condition",
                    "cheerful", "sad"),
  plot = TRUE)

For a visual confirmation of the input, the R function 
creates a figure that displays the means and standard 
deviation (see the right side of Fig. 3). After the design 
has been specified, there are two ways to calculate the 
statistical power of an ANOVA through simulations. The 
ANOVA_power function simulates data sets repeatedly 
according to the specified parameters and calculates the 
percentage of statistically significant results. Following is 
the code for performing 1,000 simulations, which should 
take approximately 15 s and yields reasonably accurate 
results for experimenting with the power-analysis 
function:

result_monte <- ANOVA_power(design_result,
                                nsims = 1000)

For most designs, increasing the number of simulations 
to 10,000, which means the calculations would take a 
few minutes to complete, should give results accurate 
enough for most practical purposes.

The ANOVA_exact function simulates a data set that 
has exactly the desired properties, performs an ANOVA, 
and uses the ANOVA results to compute the statistical 
power.

Here is an example of the same design stated above:

result_exact <- ANOVA_exact(design_result)

The first approach is a bit more flexible (e.g., it allows 
for sequential corrections for multiple comparisons, such 
as the Holm procedure), but the second approach is 
much faster (and generally recommended). There is 
often uncertainty about the values that are required to 
perform an a priori power analysis. The true (population-
level) pattern of means, standard deviations, and correla-
tions is unknown (and the goal of the study is to learn 
what this data pattern looks like). It makes sense to 
examine power across a range of assumptions, from 
more optimistic scenarios, to more conservative esti-
mates. In many cases, researchers should consider using 
a sample size that guarantees sufficient power for the 
smallest effect size of interest, instead of the effect size 
they expect. (For examples of ways to specify a smallest 

effect sizes of interest, see Lakens et  al., 2018). This 
approach ensures that the study can be informative, even 
when there is uncertainty about the true effect size.

If ANOVA_power is used, the results from the simula-
tion will vary each time the simulation is performed 
(unless a seed is specified, e.g., set.seed = 2019). 
A user should specify the number of simulations (the 
more simulations, the more accurate the results are, but 
the longer the simulation takes), the alpha level for the 
tests, and any adjustments for multiple comparisons that 
are required. The outputs from ANOVA_exact and 
ANOVA_power are similar, and provide the statistical 
power for the ANOVA and all simple comparisons 
between conditions. Here is an example of the output 
from ANOVA_power:

Power and Effect sizes for ANOVA tests
                  power  effect_size
anova_condition  88.191   0.06425
Power and Effect sizes for
pairwise comparisons (t-tests)
                 power  effect_size
p_cheerful_sad  88.191   -0.5017

The same results are returned in the online Shiny app, 
but users can also choose a “download PDF report” 
option to receive the results as a PDF file that can be 
saved to be included as documentation for sample-size 
requirements (e.g., for a preregistration, Registered 
Report, or grant application). An example of the input 
in the ANOVA_power Shiny app and the corresponding 
results are presented in Figures 3 and 4.

These results show that when 100,000 simulations are 
performed for our two-group between-participants 
design with means of 1 and 0, a standard deviation of 
2, and 80 participants in each group (for a total of 160 
participants), with a seed set to 2019 (these settings were 
used for all simulation results reported in this article), 
the statistical power (based on the percentage of p < α 
results) is 88.19% and the average η

p

2 is .064. The simu-
lation also provides the t-test results for the individual 
comparisons. Since there are only two groups in this 
example, the statistical power for the individual com-
parisons is identical to that for the ANOVA, but the 
expected effect size is given as Cohen’s d : −0.50.

Simulating Statistical Power  
for Different Factorial Designs

Now that we have illustrated the basic idea behind 
power analyses in Superpower, we can use it to explore 
how changes to the experimental design influence 
power and answer some of the questions our hypotheti-
cal researcher is confronted with when designing a 
follow-up study. We first examine what happens if we 
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add a third, neutral condition to the design. Let us 
assume that we expect the mean enjoyment rating for 
the neutral condition to fall either perfectly between the 
means in the cheerful and sad conditions or to be equal 
to the mean in the cheerful condition. Will simply col-
lecting data from 80 additional participants in the neutral 
condition (for a total of 240 participants) be enough for 
a one-way ANOVA to have sufficient power? The R code 
to specify the first design is

design_result_1 <– ANOVA_design(
  design = "3b", n = 80,
  mu = c(1, 0.5, 0), sd = 2,
  labelnames = c("condition",
                    "cheerful",
                    "neutral", "sad"))

The design now has three between-participants con-
ditions, and we can explore what would happen if we 
collect data from 80 participants in each condition.

If we assume that the mean in the neutral condition 
falls exactly between the means in the cheerful and sad 
conditions, the simulations show that the statistical 
power for a three-group one-way ANOVA F test is 
reduced to 81.14%. If we assume that the mean in the 
neutral condition is equal to the mean in the cheerful 
condition, the power increases to 91.03%. This highlights 
how different expected patterns of means translate into 
different effect sizes, and thus different levels of statisti-
cal power. Compared to the two-group design (for which 
the power was 88.19%), three things have changed in 
the three-group design. First, the numerator degrees of 
freedom has increased because an additional group has 
been added to the design, which makes the noncentral 
F distribution more similar to the central F distribution, 
which reduces the statistical power. Second, the total 
sample size is 50% larger after 80 participants have been 

added in the third condition, which increases the statisti-
cal power of the ANOVA. Third, the effect size, Cohen’s 
f, has decreased from 0.25 to either 0.20 (if we expect 
the mean in the neutral condition to fall between the 
means in the other two conditions) or 0.24 (if we expect 
the mean in the neutral condition to equal the mean in 
the sad condition), which reduces the statistical power. 
The most important take-home message is that changing 
an experimental design can have several opposing 
effects on the power of a study, depending of the pattern 
of means. The exact effect of these three changes on the 
statistical power is difficult to anticipate from one design 
to the next. This highlights the importance of thinking 
about the specific pattern of means across conditions 
that a theory predicts when performing an a priori power 
analysis.

Power for Individual Comparisons

Although an initial goal might be to test the omnibus 
null hypothesis (i.e., ANOVA), which answers the ques-
tion whether there are any differences among group 
means, researchers often want to know which specific 
conditions differ from each other. Thus, an ANOVA is 
often followed up by individual comparisons (whether 
planned or post hoc). It is very important that research-
ers consider whether their design will have enough 
power for any individual comparisons they want to 
make. Superpower automatically provides the statistical 
power for all individual comparisons that can be per-
formed, so that researchers can easily check if their 
design is well powered for follow-up tests. By default, 
the power and effect-size estimates are based on simple 
t tests. In our hypothetical example, with expected 
means of 0, 0.5, and 1 for the cheerful, neutral, and sad 
conditions, statistical power is highest for the compari-
son between the cheerful and sad conditions (88.22%). 

Fig. 4.  Screenshot of the ANOVA_power Shiny app showing the results of the power analysis for 
the inputs in Figure 3.
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We see that (except for minor differences due to the fact 
that simulations will give slightly different results each 
time they are run) the power estimate is identical to that 
for the two-group design. The estimated statistical power 
provided by the ANOVA_power function is only 35.03% 
for the comparison of the cheerful and neutral condi-
tions and 34.72% for the comparison of the sad and 
neutral conditions (the two power estimates differ 
slightly because they are based on simulations, even 
though the difference between means is identical, i.e., 
0.5). It is clear that our design, despite having sufficient 
power to detect a main effect, is not well powered for 
the individual comparisons we are interested in.

It is also possible to combine variance estimates from 
all conditions and calculate the estimated marginal 
means (Lenth, 2019) when performing individual com-
parisons. This is done by setting emm = TRUE within 
the ANOVA_power or ANOVA_exact function, or 
checking this option in the Shiny app. This approach 
often has greater statistical power (Maxwell et al., 2017), 
depending on whether the assumption of equal vari-
ances (also known as the homogeneity assumption) is 
met, which may not be warranted in psychological 
research (Delacre et  al., 2017). The degree to which 
violations of the homogeneity assumption affect Type I 
error rates can be estimated with the ANOVA_power 
function (see the Violation of Assumptions section). 
Power analysis for individual comparisons is relatively 
straightforward and can easily be done in all power-
analysis software, but we hope that by providing power 
for all individual comparisons alongside the ANOVA 
result by default, Superpower and the Shiny apps will 
nudge researchers to take into account the power for 
follow-up tests.

When performing multiple individual comparisons, 
researchers need to choose the alpha level and ensure 
that the Type I error rate is not inflated. By adjusting for 
multiple comparisons, they ensure that they do not con-
clude there is an effect in any of the individual tests 
more often than the desired Type I error rate. Of the 
several techniques to control error rates, the best known 
is the Bonferroni correction. The Holm procedure is 
slightly more powerful than the Bonferroni correction, 
without requiring additional assumptions (for other 
approaches, see Bretz et al., 2011). Power analyses using 
a manually calculated Bonferroni correction can be per-
formed with the ANOVA_exact function by specifying 
the adjusted alpha level, but the sequential Holm 
approach can be performed only in the Monte Carlo 
simulation approach (e.g., ANOVA_power). Because the 
adjustment for multiple comparisons lowers the alpha 
level, it also lowers statistical power. If we repeat the 
hypothetical ANOVA with three conditions while apply-
ing the Holm correction, we would have approximately 
78% power for the expected difference between the 

cheerful and sad conditions after controlling for multiple 
comparisons with the Holm procedure (compared to 
88.22% power without correcting for multiple compari-
sons), and only 26% power when we compare the cheer-
ful and sad conditions with the neutral condition. As the 
number of possible paired comparisons increases, the 
alpha level is reduced, and power is reduced, all else 
being equal.

These power analyses reveal the cost (in terms of the 
statistical power) of exploring all possible paired com-
parisons while controlling error rates. To maintain an 
adequate level of power after lowering the alpha level 
to control the Type I error rate after multiple compari-
sons, the sample size should be increased. In a one-way 
ANOVA, multiple comparisons are an issue only for the 
follow-up comparison, but in a 2 × 2 × 2 design, an 
ANOVA will give the test results for three main effects, 
three two-way interactions, and one three-way interac-
tion. Because seven statistical tests are performed, the 
probability of making at least one Type I error in a single 
exploratory 2 × 2 × 2 ANOVA is 1 – (.95)7, or 30%. It is 
therefore important to control error rates in exploratory 
ANOVAs (Cramer et al., 2016). If a researcher is inter-
ested only in specific tests, it is advisable to preregister 
and test only these comparisons instead of correcting 
the alpha level for all possible comparisons (Haans, 
2018).

Power for Within-Participants Designs

What would happen if we performed the second study 
as a within-participants design? Instead of collecting data 
from three groups of participants, we might collect data 
from only one group and let this group evaluate the 
cheerful, neutral, and sad voice assistants. If we want to 
examine the power for a within-participants design, we 
need to enter our best estimate for the true population 
value of the correlation between dependent measure-
ments. Ideally this value is based on previous studies, 
and when there is substantial uncertainty about the true 
population value, it often makes sense to explore a 
range of plausible correlations. Let us assume that our 
best estimate of the correlation between enjoyment 
ratings in a within-participants design (ρ) is .5. The fol-
lowing ANOVA_design function specifies this design:

design_within <- ANOVA_design(
  design = "3w", n = 80, mu = c(1, 0.5, 0),
  sd = 2, r = 0.5,
  labelnames = c("condition",
                     "cheerful",
                     "neutral", "sad"))

Note that the design specification has changed from 3b 
(a one-factor between-participants design with three 
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Box 2.  Formula for Effect Sizes for Within-Participants Designs

The effect size in a two-group within-participants design is referred to as Cohen’s dz (because it is the effect size 
of the difference score between x and y, referred to as z). The relation between the standard deviation of the 
mean difference and the standard deviation of the means is

	 σ σ ρz = −2 1( ). 	 (8)

Cohen’s dz is used in power analyses for dependent-samples t tests, but there is no equivalent Cohen’s fz for 
a within-participants analysis of variance, and Cohen’s f is identical for within- and between-participants designs. 
Instead, the value for λ is adjusted based on the correlation. For a one-way within-participants design, λ is iden-
tical to the calculation for a between-participants design in Equation 6, multiplied by u, a correction for within-
participants designs that is calculated as

	 u
k

=
−1 ρ

, 	 (9)

where k is the number of levels of the within-participants factor and ρ is the correlation between dependent 
variables. Equations 4 and 5 no longer hold when measurements are correlated. G*Power (Faul et al., 2007) by 
default expects the user to input an f or ηp

2  that does not incorporate the correlation, but the correlation is incor-
porated in the output of software packages such as SPSS. One can enter the ηp

2  from SPSS output in G*Power 
after checking the “as in SPSS” checkbox in the options window, but forgetting this is a common mistake in 
power analyses for within-participants designs in G*Power. For a one-way within-participants design, Cohen’s f 
can be converted into the Cohen’s f SPSS uses through

	 f f
k

k

n

nSPSS
2 2

1 1

1

1
= ×

−
×

−
×

− ρ 	 (10)

and subsequently transformed to ηp
2  through Equation 5.

levels) to 3w (a one-factor within-participants design 
with three levels), and the correlation parameter r = 
0.5 has been added to specify the expected correlation 
between dependent variables in the population.

A rough but useful approximation of the sample size 
needed in a within-participants design (NW), relative to the 
sample size needed in a between-participants design (NB), 
is (from Maxwell & Delaney, 2004, p. 562, Formula 47)

	 N
N

aW
B=

−( )
,

1 ρ
� (7)

where a is the number of within-participants levels and 
ρ is the correlation between measurements in the popu-
lation. This formula shows that switching from a 
between- to a within-participants design reduces the 
required sample size simply because each participant 
contributes data to each condition, even if the correla-
tion between measurements is 0. In our example, a 
within-participants design would require only one third 
the number of participants as a between-participants 
design to achieve practically the same statistical power 
even when the three measurements are not correlated. 

Furthermore, a positive correlation would reduce the 
magnitude of the error term by removing systematic 
individual differences, and thereby increase the statisti-
cal power.

We can perform the simulation-based power analysis 
with the ANOVA_power or ANOVA_exact function:

power_within = ANOVA_power(design_within,
                              nsims = 100000)
exact_within = ANOVA_exact(design_within)

Recall that in our between-participants design, power 
was 81.14% when the enjoyment scores were uncorre-
lated. The power for a repeated measures ANOVA based 
on this design, when ratings for each of the three condi-
tions are collected from 80 participants, is 98.38%. The 
effect size, as indicated by the results from the simula-
tion, is much larger for the within-participants design 
(ηp

2  = .12) than for the three-group between-participants 
design (ηp

2  = .05). However, as explained by Olejnik and 
Algina (2003), it is difficult to compare ηp

2  across differ-
ent research designs. Box 2 explains that the default 
calculation of ηp

2  by G*Power does not depend on the 
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correlation among measures, and therefore differs from 
how other statistical software (including SPSS) calculates 
ηp

2 . This peculiar choice for a default leads to errors for 
power analyses that include within-participants factors 
whenever researchers take a ηp

2  reported in the pub-
lished literature and enter it in G*Power as the effect 
size (without changing the default power-calculation 
procedure by choosing the “as in SPSS” checkbox in the 
options menu). The Superpower package does not 
require researchers to enter ηp

2 , but allows researchers 
to enter either a single value for the correlation between 
all dependent variables or a correlation matrix that speci-
fies the expected population correlation for each pair of 
measurements.

Power for Interactions

So far, we have explored power analyses for one-factor 
designs. Superpower can easily provide statistical power 
for designs with up to three factors of up to 999 levels 
(e.g., 4b*2w*2w would specify a mixed design with 
two within-participants factors each with two levels and 
one between-participants factor with four levels). Let us 
assume that we plan to perform a follow-up experiment 
in which, in addition to making the voice sound cheerful 
or sad, we introduce a second factor by making the voice 
sound more robotic compared to the default human-like 
voice, again collecting data from 80 participants in each 
condition. Different patterns of results could lead to 
observed interactions in this 2 × 2 design. Either no 
effect might be observed for the robotic voice or the 
effect observed for the robotic voice might be the oppo-
site of that observed for the human-like voice (i.e., par-
ticipants might enjoy a sad robotic voice more than a 
cheerful one, a “Marvin the Depressed Robot effect”). 
We specify the pattern of means as (1, 0, 0, 0) for 
the ordinal interaction, or as (1, 0, 0, 1) for the 
crossover (or dis-ordinal) interaction (see Fig. 5 for the 
expected pattern of means):

design_result_cross <- ANOVA_design(
  design = "2b*2b", n = 80,
  mu = c(1, 0, 0, 1), sd = 2,
  labelnames = c("condition",
                     "cheerful", "sad",
                     "voice",
                     "human", "robot"))

Simulations (using either the ANOVA_power or the 
ANOVA_exact function) show that we have 99.38% 
power for the crossover interaction when we collect data 
from 80 participants per condition and 60.62% power 
for the ordinal interaction. For comparison, the power 
for the simple effect comparing cheerful and sad human 
voices is 88.16%, similar to the power for the original 
one-way ANOVA we started with. Statistical power is 
much higher for the crossover interaction than for the 
ordinal interaction because the effect size is twice as 
large, as explained in Box 3. Statistical power is also 
higher for the crossover interaction than for the simple 
comparison, even though the effect size is identical 
(Cohen’s f  = 0.25), because the sample size has dou-
bled. The interaction effect can be contrast-coded as 1, 
−1, −1, 1 to test the scores of 160 participants in the 
cheerful-human and sad-robot conditions against the 
scores of 160 participants in the cheerful-robot and sad-
human conditions. The key insight here is that it is not 
the sample size per condition but rather the pooled 
sample size across conditions compared in a contrast 
that determines the power for the main effects and the 
interaction (cf. Westfall, 2015b).

Plotting Power Curves

The goal of an a priori power analysis is to determine 
the sample size required to reach a desired statistical 
power. By plotting the statistical power for each effect 
in an ANOVA design across a range of sample sizes, one 
can easily see which sample size would provide a 

−2

−1

0

1

2

3

Cheerful Sad
Condition

mu Human Voice

Robot Voice

−2

−1

0

1

2

3

Cheerful Sad
Condition

mu Human Voice

Robot Voice

Fig. 5.  Visualization of the expected means and standard deviations for an ordinal interaction (left) and a crossover (right) interaction in 
our hypothetical example. Error bars represent ±1 SD.
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desired statistical power for all effects in the ANOVA. 
Superpower allows users to plot the statistical power 
across a range of sample sizes by specifying a desired 
statistical power and a maximum sample size. The plots 
will indicate if the desired power is reached for each 
effect, and if so, at which sample size. The code below 
specifies a 3 × 2 between-participants design (note that 
for two factors a and b, with three and two levels respec-
tively, means are entered: a1_b1, a1_b2, a2_b1, a2_
b2, a3_b1, a3_b2) and then calls the plot_power 
function to plot the power for designs with 10 to 100 
participants per condition (see Fig. 6 for the power 
curve):

design_result <- ANOVA_design(
  design = "3b*2b", n = 50,
  mu = c(1, 2, 2, 3, 3, 4), sd = 3)
plot_power(design_result,
  min_n = 10, max_n = 100,
  desired_power = 90 , plot = TRUE)

There are two main effects, but no interaction effect. 
The main effect for factor a is the larger main effect, and 
90% power is reached with 29 participants in each con-
dition; for factor b, 90% power is reached with 64 par-
ticipants in each condition. Because there is no 
interaction effect, only 5% Type I errors are expected 
for this effect, regardless of the sample size, and the 
desired power of 90% is never reached.

Plotting power curves across a range of sample sizes 
is implemented only for the ANOVA_exact function, 
and not for the ANOVA_power function because this is 
too resource intensive. Users of the latter function will 
need to steadily increase or decrease the sample size in 

their simulations to determine the sample size required 
to achieve the desired power for each effect.

Violation of Assumptions

So far, we have shown how simulations can be useful 
for power analyses for ANOVA designs when all assump-
tions of the statistical tests are met. An ANOVA is quite 
robust against violations of the normality assumption, 
which means the Type I error rate remains close to the 
alpha level specified in the test. Violations of the homo-
geneity-of-variances assumption can be more impactful, 
especially when sample sizes are unequal between con-
ditions. When the equal-variances assumption is violated 
for a one-way ANOVA, Welch’s F test is a good default 
(Delacre et al., 2019). When the sphericity assumption in 
within-participants designs is violated (when the variances 
of the differences between all pairs are not equal), a spheric-
ity correction can be applied (e.g., the Greenhouse-Geisser 
or Huynh-Feldt correction) or a MANOVA can be per-
formed. Alternative approaches for ANOVA designs with 
multiple between-participants factors include, for exam-
ple, heteroscedasticity robust standard errors. Super-
power allows researchers to perform power analyses in 
cases of unequal variances (or correlations) by perform-
ing Welch’s F test, applying sphericity corrections, or a 
MANOVA.

Although some recommendations have been pro-
vided to assist researchers in choosing an approach to 
deal with violations of the homogeneity assumption 
(Algina & Keselman, 1997), it is often unclear if these 
violations of the homogeneity assumption are conse-
quential for a given study. So far we have used simula-
tions in Superpower to simulate patterns of means when 

Box 3.  Calculating Effect Sizes for the Interactions in the Hypothetical Example

Mathematically, the interaction effect is computed as the cell mean minus the sum of the grand mean, the mar-
ginal mean in each condition of one factor minus the grand mean, and the marginal mean in each condition for 
the other factor minus the grand mean (see Maxwell et al., 2017). For example, for the cheerful human-like voice 
condition in the crossover interaction, the calculation is 1 (the value in the cell) – (0.5 [the grand mean] + 0 [the 
marginal mean of cheerful voices minus the grand mean of 0.5] + 0 [the marginal mean of human-like voices 
minus the grand mean of 0.5]). Thus, the interaction effect is 0.5. Completing this calculation for all four cells 

for the crossover interaction gives the values 0.5, −0.5, −0.5, and 0.5. Cohen’s f is then 
0 5 0 5 0 5 0 5

4
2

2 2 2 2. . . .

)

+ − + − + −
, 

or 0.25. For the ordinal interaction, the grand mean is (1 + 0 + 0 + 0)/4, or 0.25. Completing the calculation for 
all four cells for the ordinal interaction gives the values 0.25, −0.25, −0.25, and 0.25, and a Cohen’s f of 0.125. 
Thus, the effect size of the crossover interaction is twice as large as the effect size of the ordinal interaction. Had 
we predicted a pattern of means of 2, 0, 0, 0, then the effect size for the ordinal interaction would have been 0.25. 
The take-home message is that a “medium” effect size (f = 0.25) translates into a much more extreme pattern of 
means in an ordinal interaction than in a dis-ordinal (crossover) interaction, or in a 2 × 2 × 2 interaction compared 
to a 2 × 2 interaction (see also Perugini et al., 2018). It might therefore be more intuitive to perform a power analy-
sis based on the expected pattern of means than to perform a power analysis based on Cohen’s f or ηp

2 .
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there is a true effect, but we can also simulate a null 
effect. Such Monte Carlo simulation studies are used in 
published articles to examine the Type I error rate 
under a range of assumptions and for different tests. 
Superpower makes it easy to perform such simulation 
studies for the specific scenario a researcher is faced 
with, and can help a researcher decide whether viola-
tions of assumptions are something to worry about, and 
whether approaches chosen to deal with violations are 
sufficient.

As an example, let us revisit our earlier 2 × 2 between-
participants design. Balanced designs (the same sample 
size in each condition) reduce the impact of violations 
of the homogeneity assumption, but let us assume that 
for some reason sample sizes varied between 20 and 80 
per cell, and the population standard deviations varied 
extremely across conditions (from 1 to 5). We can use 
Superpower to estimate the impact of violating the homo-
geneity assumption by simulating a null effect (the 
means in all conditions are the same) and examining the 

29

64

Desired Power Not Reached

a
b

a:b

25 50 75 100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Sample Size per Condition

Po
w

er
 (%

)

Fig. 6.  Illustration of power curves across a range of sample sizes per group, from n = 10 to n = 100, for the two main effects and 
the interaction. The orange horizontal lines highlight the desired level of statistical power (90%).
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Type I error rate. We can specify a design with unequal 
sample sizes and unequal variances, as illustrated in the 
following code:

design_violation <- ANOVA_design(
  design = "2b*2b", n = c(20, 80, 40, 80),
  mu = c(0, 0, 0, 0), sd = c(3, 1, 5, 1),
  labelnames = c("condition",
                     "cheerful", "sad",
                     "voice",
                     "human", "robot"))
power_result = ANOVA_power(design_violation,
                               nsims = 100000)

This simulation indicates that the Type I error rates 
for the main effects and interactions in the ANOVA are 
approximately 15.85%. It is clear that the Type I error 
rate is too high. One solution would be to make sure 
that the experiment has equal sample sizes. If this is 
achieved, the Type I error rate is reduced to 4.98%, 
which is acceptable.

Conclusion

It is important to justify the sample size when designing 
a study. Researchers commonly find it challenging to 
perform power analyses for complex ANOVA designs 
that involve a mix of between- and within-participants 
factors. The R package, guide book, and Shiny apps (see 
https://arcaldwell49.github.io/SuperpowerBook, 
Caldwell et al., 2020) that accompany this article enable 
researchers to perform simulations for factorial experi-
ments of up to three factors and any number of levels, 
making it easy to perform simulation-based power analy-
sis without extensive programming experience. The 
power for designs with specific patterns of means, stan-
dard deviations, and correlations between variables can 
be explored to choose a design and sample size that 
provides the highest statistical power for future studies. 
Simulation-based approaches can also help to provide a 
better understanding of the factors that influence the sta-
tistical power for factorial ANOVA designs or the impact 
of violations of assumptions on the Type I error rate.

Transparency

Action Editor: Daniel J. Simons
Editor: Daniel J. Simons
Author Contributions

D. Lakens and A. R. Caldwell collaboratively developed the 
Superpower R package. D. Lakens wrote the initial draft, 
and both authors revised the manuscript. A. R. Caldwell 
created the Shiny apps.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this 
article.

Funding
This work was funded by VIDI Grant 452-17-013 from the 
Netherlands Organisation for Scientific Research.

Open Practices
Open Data: not applicable
Open Materials: https://osf.io/pn8mc/
Preregistration: not applicable
All materials have been made publicly available via OSF 
and can be accessed at https://osf.io/pn8mc/. This article 
has received the badge for Open Materials. More informa-
tion about the Open Practices badges can be found at 
http://www.psychologicalscience.org/publications/badges.

ORCID iD

Daniël Lakens  https://orcid.org/0000-0002-0247-239X

Acknowledgments

Many improvements to Superpower are based on feedback 
from Lisa DeBruine and the sim_design function in her faux 
R package (DeBruine, 2020). The ANOVA_exact function  
was inspired by Chris Aberson’s (2019) pwr2ppl package. We 
are grateful to Jonathon Love for proposing the name 
“Superpower” and developing a jamovi module.

The opinions or assertions contained herein are the private 
views of the author(s) and are not to be construed as official 
or reflecting the views of the Army or the Department of 
Defense. Any citations of commercial organizations and trade 
names in this report do not constitute an official Department 
of the Army endorsement of approval of the products or ser-
vices of these organizations. Approved for public release; dis-
tribution is unlimited.

Notes

1. For a detailed overview of the functionality of different software 
packages, see our supplemental file at https://osf.io/bwehv/.
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