
163

10

Best Practices in School Neuropsychology: Guidelines for Effective Practice, Assessment, and Evidence-Based Intervention, 
Second Edition. Edited by Daniel C. Miller, Denise E. Maricle, Christopher L. Bedford, and Julie A. Gettman.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.

Statistical and Clinical 
Interpretation Guidelines for School 
Neuropsychological Assessment
W. Joel Schneider

Policy, Organization, and Leadership Studies, College of Education and Human Development, 
Temple University, Philadelphia, PA, USA

Mastery of psychometrics—the science of measurement—gives assessment professionals a pow-
erful and flexible toolkit for answering important questions about individuals. Without a strong 
knowledge of psychometrics, one can do excellent work, but in limited domains. An understanding 
of these principles can mark the difference between a competent professional and a true expert. 
This chapter is aimed at practitioners who want to expand their professional toolkit for helping the 
people they assess.

This chapter distinguishes between the kind of psychometric expertise that is needed to become 
a test developer and the kind of psychometric savvy one needs to extract useful information from 
test scores. It is possible that a test developer may have relied on the most sophisticated psycho-
metric procedures available, yet the end user need not have a complete understanding of the subtle 
complexities of test design. However, one does need to understand the scores being used and how 
to correctly interpret them psychometrically. In many domains (e.g., learning disorder diagnosis, 
inference of memory processing dysfunction, estimation of the extent of brain injury), the evalua-
tor needs to think globally, flexibly, and interactively about test scores to arrive at valid conclusions 
about underlying psychological processes.

What follows is not a primer on “test developer psychometrics,” but a brief overview of basic 
psychometric principles followed by a set of procedures that may be useful in answering practi-
cal questions in individual assessment cases. To avoid repeated citations, it should be noted that 
this chapter draws heavily on many authoritative sources (e.g., Cohen et  al.,  2003; Crocker & 
Algina, 2006; Furr, 2017; McDonald, 1999; Nunnally, 1967; Raykov & Marcoulides, 2011).

Basic Statistics to Describe Unique Characteristics 
of Individuals
Typical readers of this chapter have taken statistics courses in which they learned how to describe 
and analyze data sets collected by researchers. In such courses, we have data from individuals, and 
we hope to learn something about populations and the theories that explain their behavior. Here, our 
task is the reverse. We have data-based theories about populations, and we hope to learn something 
about an individual we have assessed. Instead of using sample statistics like means, standard devia-
tions, and correlations to describe what is typical in populations, we use population means, standard 
deviations, and correlations as benchmarks to describe the unique characteristics of individuals. 
Doing so requires a different mindset about statistics and learning some additional conceptual tools.
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Reliable and Valid Measurement
If scores from a test differ dramatically each time the test is given to a person, no single score from 
that test can be trusted to be accurate. By contrast, if evidence and experience tell us that a test yields 
roughly the same score each time the same person takes it, then we are justified in giving the test 
just once. Test reliability refers to consistency of measurement. For trait-like characteristics such as 
reading ability and math skill, we expect measurements of the same person to be stable from one 
measurement to the next, at least over the short term. Unfortunately, some variables in psychology 
are not expected to be stable (e.g., mood), yet we still would like to know if our measurements of 
such variables are reliable. This difficult problem can be solved by invoking an ingenious fiction: 
the distinction between construct scores (Borsboom & Mellenbergh, 2002; Lord et al., 1968) and true 
scores (Spearman, 1904).

Construct Scores and Test Validity
A construct is a theoretical entity that explains a wide array of behaviors. For example, if a person 
has persistently sad mood, relentless negative thoughts about the self, hypersomnia, low energy, and 
reduced appetite, we would infer that the person has high levels of the theoretical construct we call 
depression. Every test we give is intended to measure one or more constructs, including constructs 
related to ability, personality, psychopathology, interests, attitudes, moods, preferences, beliefs, and 
opinions. A test score helps us know how high or low a person is on the theoretical construct’s num-
ber line of possible scores.

If we had a perfect measurement procedure that measured the construct perfectly and without 
fail, we would know each person’s construct score (see Figure 10.1). From these perfect measure-
ments, we could plot the population distribution and evaluate each person’s relative standing on the 
construct. With perfect measurement, the only reason observed scores would differ from one person 
to the next is that each person has a different construct score.

Unfortunately, perfect measures do not exist. Each measurement is influenced directly by its 
intended construct and also by any number of irrelevant influences. We would like to be able to 
quantify how much an observed score reflects the intended construct and how much it reflects other 
influences. Valid variance refers to variability in test scores due to variability in the construct scores 
(Borsboom et al., 2004). A good test score consists mostly of valid variance. In the observed score in 
Figure 10.1, the score’s validity coefficient is 0.75, meaning that 75% of the observed score’s variabil-
ity consists of valid variance. The remaining 25% of the variability in the score is due to influences 
other than the construct and is thus not valid.

Reliability and Measurement Error
All valid variance is reliable, but not all reliable variance is valid. Reliable variance refers to vari-
ability in test scores due to stable influences. In a good test, most reliable variance is valid variance. 
Unfortunately, test scores always have influences—however small—that are stable but unrelated to 
the construct we are trying to measure. For example, if a math test requires reading skills in English 
to understand the questions, the math test scores will reflect not only differences in math skill but 
also differences in reading ability in English. Thus, the test will tend to underestimate the math 
skills of students with lower reading skills or students with relative unfamiliarity with English.

The term unsystematic measurement error refers to short-lived, hard-to-anticipate influences on 
test scores that differ from person to person and moment to moment, such as fluctuations in motiva-
tion, attention, and energy. It also includes test score influences that are unlikely to be repeated, like 
examiner error and disruptive noises in the testing environment.

As you may have anticipated from the term unsystematic, there is a second kind of measurement 
error. Systematic measurement errors refer to stable, construct-irrelevant influences on test scores 
that are likely to occur each time one completes the measure. These include imperfections in the test 
design (e.g., confusing instructions) and response biases in the examinees (e.g., younger children 
often give extreme responses on questionnaires).
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Most of the time when scholars refer to measurement error, they mean unsystematic measure-
ment error. For the remainder of this chapter, error or measurement error refers to unsystematic 
measurement error, not systematic error.

True Scores Are Not Construct Scores
The true score is the score that we would obtain on a test if there were no (unsystematic) measure-
ment error. That is, every observed score X is the sum of its true score T and its unsystematic meas-
urement error E:

	 X T E 	
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FIGURE 10.1  Construct scores, true scores, and measurement error.
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Despite its name, the true score does not necessarily refer to the truth (i.e., the construct score). 
True scores are the sum of all reliable influences, including the construct scores and systematic 
measurement error. Some true scores consist of more systematic measurement error than valid vari-
ance. Thus, it is possible to estimate a person’s true score on a test, whether the test is valid or not. 
Good tests, mediocre tests, and even ridiculous, ill-conceived, and thoroughly awful tests have true 
scores. That is, true scores are consistent but not necessarily valid.

Carryover Effects
Imagine that we could give a test to a child again and again without earlier administrations of the 
test influencing subsequent administrations. Carryover effects occur when previous testing influ-
ences subsequent testing. Carryover effects include practice effects, such as when a child learns how 
to solve a problem more quickly during testing and therefore performs better the next time the test 
is given. Carryover effects can also negatively influence performance, such as when a child becomes 
bored with a test and no longer tries hard on subsequent administrations. To eliminate carryover 
effects entirely, we would have to imagine that we could rewind time repeatedly such that the person 
had no memory of being tested before. Of course, the idea that we could rewind time is preposter-
ous. Yet, some preposterous ideas are rather useful. It allows us to think about reliability without 
worrying about The Truth, which, as far as we mortals are concerned, can only be approximated.

The average of a person’s potential score on a particular test is the true score for that test. For 
example, in Figure 10.2, the population mean is 100, and the standard deviation is 15. The gray 
points in the figure represent all the possible scores a particular child could obtain in various settings 
and situations. These potential scores have a mean of 85, which is the child’s true score for this test. 
The standard deviation of these scores is the standard error of measurement (SEM) (σe = 5). It is 
unlikely that the child will score lower than 70 or greater than 100 on this test. Most likely, the child 
will score near 85 ± 5.

The term true score was coined before the distinction between systematic and unsystematic meas-
urement error was clearly understood (Borsboom & Mellenbergh, 2002). If we could rewind time 
and rename the true score, we might call it something less likely to be misunderstood (e.g., personal 
long-term average). Unfortunately, we have been calling it the true score for over a century, and it is 
probably too late for change.

FIGURE 10.2 A true score is the average of repeated measurements from the same person.
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The Standard Error of Measurement
In most classical test theory models, it is assumed that unsystematic measurement errors have the 
same distribution for all members of a particular population. The standard deviation of all the meas-
urement errors is called the standard error of measurement. However, we know that some people 
produce more consistent scores than others. For example, very young children are famously fickle 
when it comes to giving their best performance. For this reason (and others), reliability is estimated 
separately for different age groups. However, even after accounting for age, sex, race, and other 
demographic distinctions, some children are more sensitive than others to situational factors and 
their own emotional fluctuations. For example, children with attention-deficit/hyperactivity disor-
der tend to have a wide variation in their performance on attention-demanding tests, with scores 
ranging from average or better to severely impaired (Castellanos et al., 2005; Johnson et al., 2007; 
Klein et al., 2006). It is for this reason that continuous performance tests measure not only a child’s 
level of performance but also their variability of performance.

The size of the typical measurement error differs from person to person, often for reasons that 
have little to do with the person and everything to do with the test. For example, a screening test 
for identifying students with academic deficits needs to have only a few easy items. Such a test can 
reliably distinguish between students with and without academic skill deficits, but it cannot reli-
ably distinguish between students with average and high skills. Thus, low scores on the test have a 
smaller measurement error than high scores on the test have.

Reliability Coefficients
Technically, the question “How reliable is the test?” is ill posed because reliability is not guaranteed 
to be the same for all people taking a particular test. Reliability is a joint property of a particular 
test given to a particular person in a particular situation (Thompson & Vacha-Haase, 2000). It is 
therefore more appropriate to talk about the reliability of specific test scores than to talk about the 
reliability of whole tests.

Nevertheless, it is useful to know how reliable test scores are on average in a particular popula-
tion. A reliability coefficient is a summary statistic. It does not tell us the reliability of a particular 
score but does give us some idea as to what level of reliability is typical for scores in a particular 
population.

The classical test theory definition of the reliability coefficient (ρXX) is the proportion of variance 
in a score that is due to true score variance:

	

2

2
T

XX
X 	

The variance of the observed score in the denominator of this equation is easily estimated, but 
true score variance in the numerator must be estimated indirectly. There are several indirect meth-
ods of estimating reliability, and they do not always give the same result, which means that we have 
to pay careful attention to the assumptions that underlie each method.

Retest Reliability
The retest reliability coefficient measures the typical stability of scores for a particular test over a 
specified time interval. The retest reliability coefficient is the correlation between scores on a test 
that have been given to the same sample twice.

A test does not have just one retest reliability coefficient, because the retest reliability can change 
depending on the interval between the two tests. In general, the longer the interval, the smaller the 
retest reliability coefficient. Why? Very few things about human beings stay exactly the same over 
time. Some individual difference constructs are fairly stable (e.g., intelligence, personality), and we 
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can call them traits. Some constructs are expected to change often (e.g., mood), and we can call them 
states. However, it is well known that even fairly stable constructs fluctuate a little. To the degree 
that a construct is unstable, the retest reliability coefficient will underestimate the average reliability 
of the scores.

A second reason that retest reliability coefficients are sometimes inaccurate is that the act of 
measurement can alter subsequent measurements. Large carryover effects can increase or decrease 
the retest reliability coefficient.

Alternate-Form Reliability
To reduce carryover effects, instead of administering the same test twice, an alternate form of a test 
can be administered on the second administration. It is common for academic achievement tests to 
have alternate forms (e.g., Woodcock-Johnson IV [WJ IV] Tests of Academic Achievement, Forms A, B, 
and C; Schrank et al., 2014). The alternate-form reliability coefficient is the correlation between the 
two tests. The benefit of reducing carryover effects is dearly bought: it requires the construction and 
norming of a completely new test.

Split-Half Reliability
An alternate-form reliability coefficient can be had “on the cheap” if one is willing to cut one’s test 
in half. If the items of a test are divided in a sensible manner, the correlation between the totals 
of the two halves is an estimate of the reliability of each half (e.g., two-part speeded tests like the 
Comprehensive Test of Phonological Processing, Second Edition [CTOPP-2; Wagner et al., 2013] rapid 
naming tests). Unfortunately, we are uninterested in the reliability coefficient of half a test—we 
want to know the reliability of the whole test. Fortunately, there is a statistical correction that can be 
applied such that the reliability of the halves can estimate the reliability of the whole.

Spearman-Brown Prophecy Formula
Discovered independently by both Spearman (1910) and Brown (1910) at about the same time, this 
formula estimates how reliable a test becomes when we increase its length by adding parallel items 
(i.e., items similar to the existing items):

	
1 1

XX
CC

XX

k
k

	

where
ρCC = Reliability of the extended test

ρXX = Reliability of current test

k = Ratio of the number of extended test items to the number of current test items

Imagine that the split-half reliability coefficient of a test is 0.80. We would like to know the reli-
ability of the whole test, which has twice as many items. Applying the Spearman-Brown Prophecy 
Formula, where k = 2 (because we are doubling the number of test items), we see that:

	

2 0.80 0.89
1 2 1 0.80CC

	

If a reliability coefficient of 0.89 is not high enough, the Spearman-Brown prophecy formula can 
be rearranged to tell how many more parallel test items are needed to achieve a reliability coefficient 
that is sufficiently high. For example, suppose that a test needs to have a reliability coefficient of 
0.95. The Spearman-Brown Prophecy formula rearranged is:

	 X

1
1

CC XX

X CC

k
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Applying the rearranged formula, we see that:

	

0.95 1 0.89
2.35

0.89 1 0.95
k

	

If our original test has 10 items, we will need about 24 items total (10 × 2.35 = 23.5) to increase 
the reliability coefficient to 0.95.

Coefficients Alpha and Omega as Measures of Internal Consistency
The split-half coefficient is almost never used in practice because its value changes depending on 
how the test is split. To address this problem, alternate measures of internal consistency were devel-
oped that give consistent answers. The most popular measure of internal consistency is coefficient 
α, which is the average split-half coefficient after the Spearman-Brown correction has been applied 
(Cronbach, 1951). That is, if we split a test in half every way possible and calculate the split-half 
reliability coefficient, applying the Spearman-Brown correction each time, the average of all our 
calculations will be coefficient α, often referred to as Cronbach’s alpha.

Coefficient α is a good estimate of reliability but slightly underestimates reliability when test 
items are unequally related to the construct they are intended to measure. Increasingly, scholars use 
coefficient omega-total (McDonald, 1999) as a (slightly) more accurate replacement for coefficient 
α (Dunn et al., 2014).

How High Should a Reliability Coefficient Be?
How high does a test’s reliability coefficient need to be before we can recommend its use? It would be 
nice to give a good and simple answer to this question, but no simple answer is very good. Reliability 
coefficients have a possible range from 0 to 1, and there are no hard boundaries between coefficients 
that are “good enough” and coefficients that are “too low.” You sometimes hear about convenient 
threshold values like “A reliability coefficient of 0.80 is high enough for a test used as a screener, 
0.90 is high enough for use in low-stakes decisions, and 0.95 is high enough for use in high-stakes 
decisions.” Such recommendations are well-intentioned but ought not to be taken too seriously. The 
reliability of a score and the reliability of a decision based on the score are not quite the same thing. 
Under some conditions, highly reliable decisions can be based on scores with rather modest reli-
ability coefficients, and unreliable decisions can be made with scores with high reliability. To under-
stand how reliable a decision based on a score is, we can use a statistical concept called a confidence 
interval, which is based on reliability coefficients.

Confidence Intervals
A confidence interval is a method for specifying a range in which an unknown quantity is likely to 
fall. In the assessment of individuals, we often wish to know where a person’s true score is likely to 
be. In this context, a confidence interval can be used to give a sense of the most likely regions the 
true score falls.

Just as there are many different kinds of reliability coefficients, there are different kinds of con-
fidence intervals (Crawford & Garthwaite, 2002). Two types will be highlighted here. Unfortunately, 
there is no consensus on what to call them. One is a confidence interval based on the SEM and is 
centered on the observed score. The other is based on the standard error of the estimate (SEE) and 
is centered on the estimated true score (Charter & Feldt, 2001).

SEM-Based Confidence Intervals
Although we never truly know a person’s true score, we can still estimate how far the observed 
score is likely to be from the true score. Error scores are the difference between observed scores and 
true scores:

	 E X T 	
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The standard deviation of the errors (σE) is called the standard error of measurement (SEM). 
It represents a typical distance between the true score and the observed score. Specifically, it is 
the square root of the average squared distance between the observed scores and the true scores. 
Using the following equation, you can see that as a reliability coefficient approaches 1, the SEM 
approaches 0:

	 1E X XXSEM 	

Assuming that the errors are normally distributed, about 68% of observed scores have a true score 
within the interval of ±1 SEM. If we wish to specify a particular degree of confidence, we multiply 
a z-score by the SEM to create the margin of error. The z-score associated with the 95% confidence 
is about 1.96. The upper and lower bounds of the confidence interval are calculated by adding the 
margin of error to or subtracting it from the observed score:

	 SEM ECI x z 	

Suppose we measure a quantity in many individuals and specify a 95% confidence interval around 
the score. In about 95% of cases, the confidence interval will contain the individual’s true score (See 
Figure 10.3). This statement is often taken to mean that for every individual, “there is a 95% chance 
that the true score is contained by the confidence interval.” There is some philosophical debate as 
to whether it is proper to talk about probabilities of any particular confidence interval containing a 
true score. For purists, the confidence interval either contains the true score or does not. For others, 
when events have been determined but the outcome is still unknown, it does not seem like too great 
an error to still talk about the probability that the outcome will be revealed to have turned out one 
way or another. For a fuller discussion of similar issues, see Crawford et al. (2009).

Although this kind of confidence interval is not particularly hard to calculate, its proper mean-
ing is hard to explain, especially to statistically untrained parents and teachers. It is easy but incor-
rect to say that “There is a 95% chance that your child’s true score is between these two numbers.” 
It is more correct to say that this procedure captures the true score in 95% of children. Thus, the 
CISEM is ultimately not really about a particular child’s score. Fortunately, there is a different kind 
of confidence interval that is easier to explain, more relevant to the particular score, and narrower 
than the CISEM.

SEE-Based Confidence Intervals
If both observed and true scores were known, we could use regression to predict the true scores from 
the observed scores and then estimate how far our predictions were from the actual true scores. The 
SEE is the standard deviation of the prediction errors in a regression analysis.

The confidence interval based on the standard error of the estimate (CISEE) is narrower than the 
SEM-based confidence interval (CISEM) because the SEE is smaller than the SEM:

	
2

XX X XX XXSEE SEM 	

The CISEE is calculated like so:

	
SEE X XX XCI X z SEE

	

Suppose that child scores 70 on a test with an index score metric (μX = 100, σX = 15). If the reli-
ability coefficient is ρXX = 0.80, the two types of confidence intervals are:

	

2

270 100 0.8 100 1.96 15 0.8 0.8
76 11.76
64.24 to87.76

SEE X XX X X XX XXCI X z
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1

70 1.96 15 1 0.8
70 13.15
56.85to83.15

SEM X XXCI X z

	

The two procedures give different answers, and yet both are correct 95% of the time. How is it 
possible that the CISEE is narrower than the CISEM yet is equally accurate? To make sense of this seem-
ing impossibility, one must recognize that they are equally accurate answers to different questions. 
As seen in Figure 10.4, the SEM is the standard deviation of observed scores when the true score is 
held constant. The SEE is the standard deviation of the true scores when the observed score is held 
constant. The SEE is narrower than the SEM because true scores have less variability than observed 
scores. In assessment, we have an observed score in hand and would like to use this information 
to narrow our search for the true score. For this reason, the CISEE is the type of confidence interval 
provided by all major cognitive tests.

FIGURE 10.3  SEM-based 95% confidence intervals contain the true score 95% of the time.
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Application of Confidence Intervals in Practice
Confidence intervals around test scores are routinely presented in test protocols and in score reports. 
If you rely solely on the observed scores, your test interpretations are vulnerable to being overly 
precise. If the child is retested, the new score is unlikely to be exactly the same. Instead of imagining 
the scores as fixed values, imagine them dancing around within the range of the confidence interval. 
If your test interpretation remains roughly the same no matter where the scores move within the 
confidence intervals, then your interpretation has a far greater probability of being accurate and a 
far greater probability of being similar to conclusions derived from other evaluations.

Following is an example of how to explain the CISEE to parents and teachers. It may be helpful to 
have a normal curve with percentile benchmarks to give the scores context (see Figure 10.5):

Some basketball players are better than others at making free throw shots. If we observe a player 
make 8 out of 10 shots, we can guess that the player’s long-term free throw percentage is near 80%. 
However, this is only a guess, and time will tell how close to reality our guess is. Even if we know 
a player’s true free throw percentage, we cannot know how well the player will perform in any 
particular game. We only know what is typical for that player.

After an evaluation like this, we are in a similar situation. I have a test score that measures 
your child’s ability in Domain X. However, no test is perfect—every score is an estimate, not the 
precise truth. The same child performs differently on the same test on different days and in differ-
ent situations. If somehow, we could rewind time over and over and test your child many times, 
we could average all the scores and get a very accurate estimate. Let’s call that accurate number 
your child’s “typical performance.”

Obviously, we cannot rewind time, and so we may never know your child’s true typical perfor-
mance. However, this test is accurate to a known degree and allows us to make an informed guess 

FIGURE 10.4  CISEM and CISEE give different results because they answer different questions.
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as to where the typical performance is likely to be. About 95% of children who score 70 on this test 
have a typical performance between 64 and 88. These two numbers are the “95% confidence inter-
val.” I cannot say for certain where exactly your child would score on average if we could give this 
test many times without your child getting bored or discouraged; however, somewhere between 64 
and 88 is a good guess, most likely in the middle around 76.

Types of Validity
The next section of this chapter will review the various types of validity and how they influence the 
clinical interpretation of test scores. Figure 10.6 illustrates the relationships among the various types 
of validity.

Construct Validity
Construct validity refers to the degree to which theory and evidence support the use of a test for a 
particular purpose (Cronbach & Meehl, 1955; Messick, 1995). Note that this definition implies that 
validity is neither binary {valid, not valid} nor unidimensional; it is a multifaceted/multidimensional 
phenomenon. There are no thresholds that divide valid tests from tests that are not valid. Instead, 
scholars consider the totality of evidence that a test measures a particular construct and decide 
whether the test is appropriate for the purpose they have in mind.

Face Validity
Face validity only barely qualifies as a kind of validity. It refers to a superficial and subjective judg-
ment as to whether a measure appears to measure its intended construct. For instance, we could 

FIGURE 10.5  Standard scores with percentile benchmarks.
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measure sadness in a face-valid way by simply asking children, “Do you feel sad or not sad right 
now?” A face-valid measure of the ability to say the alphabet is to ask children to recite the alphabet 
and record how many errors are made. These measures have face validity because they are direct 
and obvious. They are likely reasonably valid for their intended purposes as well. Note that there is 
no “face validity coefficient” or measure of face validity. A measure is face valid to the degree that 
people agree it is a straightforward measure of its intended construct.

Some face-valid measures are not likely to be valid at all. For example, asking very young children 
to estimate how good they are at something is a straightforward method of assessing abilities. How-
ever, very young children are unlikely to give accurate self-assessments.

Most tests with proven validity are also face valid. The direct and obvious approach to measure-
ment is often the best method. However, some measures with proven validity are not obviously 
connected to the construct they are intended to measure. For example, in the Strange Situation, a 
well-validated method of assessing attachment in infants (Ainsworth et al., 1978), the parent tem-
porarily leaves the child alone in a room with a stranger. One might think that a securely attached 
infant would trust the parent to return and would not become too alarmed. However, a failure to 
become visibly alarmed is actually an indication of insecure attachment.

Content Validity
Many, if not most, psychological constructs are too broad to be measured by a single question or test 
item. Content validity refers to how adequately a measure samples the domain of the construct. For 
example, if we hope to measure reading ability and we only measure decoding, but not fluency or 
comprehension, we might have adequate coverage of the child’s ability to sound out words, but not 
of reading ability as a whole. Again, there is no such thing as a “content validity coefficient.” Experts 
evaluate a measure and render a judgment as to its content validity.

Criterion-Oriented Validity and the Nomological Network
One of the most important methods of demonstrating test validity is by showing that the measure 
correlates with other variables according to a pattern predicted by theory. The network of theo-
retically relevant relationships between the test and other variables is termed the nomological net-
work (Cronbach & Meehl, 1955). When first proposed, the evaluation of various relationships in the 
nomological network was mostly piecemeal and unsystematic. Today, statistical techniques such as 
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FIGURE 10.6 Different types of validity.
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structural equation modeling allow for precise evaluations of complex multivariate relationships. 
For example, in Figure 10.7, many relationships among the constructs are tested simultaneously.

Discriminant Validity
Discriminant validity refers to the idea that tests measuring different constructs should not have 
higher correlations than predicted by theory. For example, measures of intelligence and consci-
entiousness are not expected to have more than small correlations. If a new measure of conscien-
tiousness exhibits substantial correlations with intelligence, we would wonder if the measure is 
contaminated with too much intellectual content.

Convergent Validity
Convergent validity refers to the idea that a test should correlate substantially with other measures of 
the same construct and also with other theoretically relevant constructs.

If a test correlates highly with other tests measuring the same construct administered on the 
same occasion, the test has concurrent validity. For example, when a brief intelligence test is pub-
lished, test developers often administer a longer (and well-established) intelligence test to a portion 
of the standardization sample so that it can be shown that the brief test correlates highly with the 
more established longer test. In Figure 10.7, three measures of working memory capacity correlate 
substantially. Likewise, three measures of fluid intelligence show concurrent validity.

Working
Memory

Fluid
Intelligence

Computation
Errors

Applied
Math

FIGURE 10.7  Construct validity of a battery of working memory and fluid intelligence tests.
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FIGURE 10.9 Attenuation 
of validity.

Originally, predictive validity referred to a test’s ability to predict outcomes measured on a subse-
quent occasion. However, many people use the term predictive in a broader sense: Time and sequence 
are irrelevant, as long as one score is a significant predictor of another in a statistical model. For 
example, measures of intellectual functioning in adolescents can “predict” aspects of brain func-
tioning measured earlier in childhood (Burgaleta et al., 2014). Obviously, the future cannot cause 
the past, but it can reveal things about the past that we did not previously know. This broad sense of 
predictive validity sometimes subsumes concurrent validity, leading to the term predictive validity 
being used synonymously with convergent validity.

In Figure 10.7, the fluid intelligence measures have predictive validity in that they predict scores 
on an applied math test. The working memory measures predict the applied math scores but also 
“careless” computational errors (i.e., items missed because of lapsed attention rather than a lack of 
knowledge).

In Figure 10.7, we see that the cognitive tests demonstrate incremental validity, which could be 
termed discriminant predictive validity. That is, both sets of cognitive tests provide unique infor-
mation about the two outcomes. For example, although fluid intelligence is correlated with com-
putation errors, it provides no incremental information beyond what we already knew from our 
working memory tests. In contrast, for applied math performance, the fluid intelligence tests do 
provide information beyond what can be known from the working memory measures. In this case, 
both fluid intelligence and working memory demonstrate incremental validity in predicting applied 
math performance. To some degree, they are redundant (i.e., they are correlated), but each provides 
unique information about applied math performance that the other does not.

Reliability and Validity
Validity and reliability have an interesting relationship. Like reliability, validity is a joint prop-
erty of persons, situations, and test scores. Unreliable measurement has no hope of being valid. 
The reverse is not true, however; without validity, reliability is worse than useless—it means 
that the test gives consistently wrong information. Without validity, a test has no reason to exist.

Figure 10.8 shows two dimensions along which influences on test scores can fall. To the 
degree that an influence on the test score is part of the construct we intend to measure, the 
influence increases the validity of the test. To the degree that an influence is stable over time, 
it increases the retest reliability of the test. Biases are stable influences that cause scores to be 
reliable but inaccurate. It is possible to have valid measurement of temporary states that, by 
definition, have low retest reliability. Traits are stable and valid influences on test scores. Error 
is unstable and not relevant to the construct.

The degree to which low reliability interferes with valid measurement is called attenuation 
of validity. Consider the tests in Figure 10.9. Test X1 measures construct X, and test Y1 measures 
construct Y. To make everything simple, all tests and constructs have a standard deviation of 1. 
The correlation between X and Y is ρXY. The relationship between the observed variables can be 
found by tracing the connecting paths between them, multiplying all the path coefficients as 
we go. Thus, the correlation between X1 and Y1 is:

	 1 1X Y XY XX YY 	

Because reliability coefficients cannot exceed 1, the quantity XX YY  cannot exceed 1, 
and therefore X Y XY1 1

. To the degree that either measure produces unreliable scores, the 
observed correlation will likely be lower than its theoretical value.

If we have an estimate of reliability for both our measures and the estimated correlation 
between them, we can estimate how correlated the latent constructs are (Spearman, 1910):
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FIGURE 10.8 Different kinds 
of influences on test scores.
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If this equation produces a value greater than 1, one or more estimates in the equation are inac-
curate. When first learning about this method of disattenuating the observed validity coefficient, it 
seems impossible, and a little like cheating. However, this technique is essentially what occurs in 
any estimation of relationships between latent variables.

In psychological assessment, we often select tests that measure constructs that we know will 
explain (or predict) important life outcome variables. Each predictor’s explanatory power depends 
on its correlation with the outcome measure. If we choose to measure predictors with low reliability, 
we have no hope of arriving at valid explanations or accurate predictions.

Understanding Composite Scores
Psychological tests and questionnaires can achieve adequate reliability only by adding many item 
scores together. Further reliability (and sometimes validity) is achieved by adding together scores 
from different tests to create composite scores. In all major cognitive and academic test batteries, 
various composite scores are created by default. Most—but not all—of these composite scores are 
created using sound logic and have solid evidential backing. To be confident that your test score 
interpretations are correct, you need a firm grasp of the principles by which good composites are cre-
ated. Once this expertise is acquired, you can apply it by creating useful custom composite scores not 
anticipated by test publishers. If you are working within the Cattell-Horn-Carroll (CHC) framework 
(McGrew,  2009; Schneider & McGrew,  2018), detailed guidance for selecting tests for composite 
scores is found in the cross-battery assessment approach specified by Flanagan et al. (2013).

Good Composite Scores Are Theoretically Plausible
Not just any set of scores should be combined into a composite score. In most cases, composites 
scores are justified when the scores are strongly correlated and intended to be measures of the 
same well-validated construct. For example, the Oral Vocabulary test and the Picture Vocabulary 
test from the WJ IV (Schrank et al., 2014) both measure vocabulary. Although they measure dif-
ferent aspects of vocabulary via different test paradigms, combining them makes sense if our pur-
pose is to measure a person’s understanding of words rather than to emphasize the difference 
between the person’s ability to define words orally and the person’s ability to name pictured objects 
and concepts.

Good Broad Composites Have Adequate Content Validity
Most psychological constructs are too broad to be measured by a single item or even a single kind 
of test. Content validity refers to how adequately a measure samples the domain of the construct. 
For example, working memory refers to a domain-general capacity to hold and manipulate informa-
tion in short-term memory (Baddeley, 2012). The construct has auditory, visual, and perhaps other 
kinds of components as well (e.g., episodic memory). If all your tests of working memory capacity 
are auditory, then your composite is a measure of auditory working memory, not working memory 
capacity in general. In many cases, that is exactly what you want, and in such cases, it is best to be 
clear about what your composite consists of.

Some constructs have so many components and facets that it is impractical to measure them 
all. In such cases, it is acceptable to select a few representative components, preferably those 
that are central to the construct’s definition and have demonstrated utility. For example, Visual 
Spatial Processing (Gv) consists of many narrow abilities, most of which have unknown predic-
tive validity. In such cases, it is best to select measures of visualization and mental rotation, 
which are core narrow abilities within Gv and have substantial research findings attesting to 
their utility.
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Good Composites Are Well-Balanced
An imbalanced composite consists more of one kind of narrow component than another. If you have 
three tests in your broad ability composite, it is preferable to select tests measuring three different 
narrow abilities so that the composite is not imbalanced and has greater content validity. If you have 
two tests of one narrow ability and a single test of another narrow ability, you can maintain balance 
by creating a narrow composite with the first two tests and then combining the third test with the 
newly created narrow composite. With four tests, you can measure four different narrow abilities, or 
you can measure two narrow abilities with two tests each.

Sometimes composites are imbalanced for good reasons. For example, the Full Scale Intel-
ligence Quotient (FSIQ) from the Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V; 
Wechsler,  2015) consists of two measures of verbal comprehension (Gc), two measures of fluid 
reasoning (Gf ), and one measure each of visual-spatial processing (Gv), working memory (Gwm), 
and processing speed (Gs). Gc and Gf are double-weighted because their regression coefficients are 
usually larger than that of other abilities when those scores are used to forecast a wide range of 
outcomes. Similarly, the WJ IV General Intellectual Ability (GIA) score differentially weights its 
component scores in proportion to their loadings on the general factor of intelligence. Thus, the 
score is more closely aligned with the construct it is intended to measure than it would be if the 
components were equally weighted.

If examiners are thinking of differentially weighting scores or including more scores of one narrow 
component than another, they need a compelling justification for doing so. For example, it is appro-
priate to include more inductive reasoning tests than general sequential reasoning tests in a fluid 
reasoning composite because inductive reasoning is more central to the fluid reasoning construct.

Good Composite Scores Consist of  Tests with  Diverse  
Paradigms
If your composite consists of tests using the same test paradigm, it will be harder to tell if a student’s 
difficulty with the test is due to an ability deficit or because of a (possibly temporary) difficulty with 
the test paradigm. For example, the WISC-V Vocabulary and the Verbal Knowledge test from the 
Stanford-Binet, Fifth Edition (SB5; Roid, 2003) are both excellent but are nearly the same kind of 
vocabulary test. You might use one test as a follow-up for the other if the first test score is in doubt, 
but selecting both tests ahead of time as an overall measure of vocabulary would be a mistake.

Good Composites Exclude Measures of What the Composite 
Is Intended to Explain
We often use one construct to explain another, but the explanatory construct must not be a direct 
measure of what we hope to explain. For example, reading vocabulary tests have legitimate uses, 
but not for explaining word reading problems. To say that a low score on a reading vocabulary test 
explains the word reading deficit is to engage in circular reasoning. Reading vocabulary tests are bet-
ter used as explanations of reading comprehension tests.

To take a less obvious example, suppose we believe that working memory deficits are interfering 
with a student’s math calculation fluency. The Paced Auditory Serial Addition Test (PASAT; Gronwall 
& Sampson, 1974) affords a wonderful opportunity to observe in real time how a person attempts 
to perform mental arithmetic rapidly under a working memory load. However, because the PASAT 
requires rapid mental arithmetic, it should not be included in a working memory composite used to 
explain calculation difficulties.

For similar reasons, the language-heavy sentence repetition paradigm should not be included in a 
working memory composite that “explains” language problems. However, once a working memory 
deficit has been shown to be present with other tests, sentence repetition tests (e.g., WJ IV OL Sen-
tence Repetition, Wechsler Individual Achievement Test, Fourth Edition (WIAT-IV; Wechsler, 2020) 
allow us to observe directly how working memory deficits interfere with receptive and expres-
sive language.
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Quantitative reasoning is considered a component of fluid reasoning (Carroll, 1993), but many 
quantitative reasoning measures blur the lines between cognitive and achievement measures 
because formal training in math confers obvious advantages on many test items. If a fluid reasoning 
composite is going to serve as an explanation of math difficulties, measures of quantitative reason-
ing should be separated from other fluid reasoning measures, particularly quantitative reasoning 
measures that require non-trivial calculations (e.g., WISC-V Arithmetic and WJ IV COG Number 
Series). Instead, use measures with no obvious calculation requirements to estimate general fluid 
reasoning. Overall, non-quantitative fluid reasoning deficits can serve as an explanation of quantita-
tive reasoning deficits, which, in turn, explain difficulties with applied math problems.

Difference Scores
How unusual is it for a child’s reading and math achievement scores to differ by two or more stand-
ard deviations? For example, suppose that a child’s reading score is 85, and the child’s math score is 
115. How unusual is this pattern of scores? To answer this question precisely, we need a large sample 
of children comparable to this child. Access to such data sets is rare. However, it is unlikely that our 
answer needs to be precise. Approximate answers are usually sufficient for most assessment questions. 
We can use our knowledge of the properties of difference scores to obtain approximate answers to such 
questions. Suppose we have two variables, X (Reading) and Y (Mathematics). The difference score is:

	 85 115 30D X Y 	

When the X and Y have the same mean and standard deviation (σ), the mean of a difference score 
is 0, and the standard deviation of the difference score is:

	 2 2D XY 	

Suppose that the correlation of X and Y is 0.60. Since both X and Y are standard scores with a 
standard deviation of 15, the standard deviation of the difference score becomes:

	 15 2 2 0.60 13.42D 	

If both scores are approximately normal, the difference score is approximately normal. We can 
look up where a difference score is in the normal distribution by using the normal cumulative distri-
bution function, which is available in most statistical programs and in Excel. In Excel:

=NORM.DIST(−30,0,13.42,TRUE)

=0.013

This probability means that about 1.3% of children differ by 30 or more points in this particular 
direction. If we double this amount to 2.6%, we estimate the proportion of children who differ by 30 
or more points in either direction.

Difference Scores and Clinical Significance
Some test protocols and printouts will tell you if the difference between two scores is statistically 
significant. The significance value in this context tells you the probability that the scores would dif-
fer by the observed amount if their true scores were equal (i.e., the only reason the observed scores 
differ is due to measurement error). If the probability is low, then you can conclude that the two 
true scores differ by one or more points in the observed direction. With a term like significance, one 
would expect a more important finding than that. Indeed, statistical significance is relatively unim-
portant in the context of difference scores. Fairly small differences can be statistically significant if 
the scores’ reliability coefficients are high. Small differences, even if statistically significant, are not 
likely to be clinically significant in terms of explanation, prediction, and treatment selection.
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Because statistically significant differences are often quite common, it is better to focus on dif-
ferences that are rare. Rare differences are not necessarily clinically significant, but they have the 
potential to be so. Common benchmarks for rarity are 15%, 10%, 5%, 1%, and powers of 10 smaller 
than that: 1 in 1000, 1 in 10,000, 1 in 100,000, and so forth.

The least controversial use of difference scores is that large (i.e., rare) differences should prompt 
us to check for scoring errors. The rarer the difference, the more likely some kind of measurement 
error has occurred. There are several other legitimate uses of difference scores. For example, some 
ability profiles are associated with choosing different kinds of college majors and careers. Scoring 
better in spatial ability and mathematics compared to verbal ability is associated with being more 
likely to choose a career in science, technology, engineering, and mathematics (Coyle et al., 2014).

It is important, however, not to get carried away with difference scores. Most differences are not 
meaningful in and of themselves, and small differences are unlikely to replicate in a subsequent 
evaluation (Styck et al., 2019). For this reason, elaborate hypotheses based on specific configurations 
of multiple scores are unlikely to be useful (McGill et al., 2018).

Some practitioners are taught that scores that are substantially different from each other should 
not be combined into composite scores. There is a measure of wisdom in this idea, but it is generally 
acceptable to combine discrepant scores as long as there is no reason to doubt the accuracy of the 
scores. A composite consisting of scores that are different from each other is generally just as valid 
as a composite consisting of scores that are similar to each other (Freberg et al., 2008; McGill, 2016; 
Schneider & Roman, 2018). The most likely reason that the scores differ from each other is that one 
score is a moderate overestimate of the ability, and the other is a moderate underestimate of the 
ability. More likely than not, the overestimate and the underestimate will cancel each other out, and 
the composite score will be closer to the true score than either test score alone. Also, the fact that 
two scores are similar to each other or nearly equal confers no protection against overestimation 
or underestimation. That is, it is quite possible that the two scores are both overestimates or both 
underestimates. If the scores are the same or different, the risk of inaccuracy is equal.

If you have reason to doubt one of the scores, then of course you should conduct follow-up tests 
with measures that assess similar abilities to see if one or both scores were inaccurate. If the score 
difference is confirmed with follow-up testing, it is legitimate to interpret the difference and, if 
needed, combine all available legitimate scores into a proper composite score.

The calculation method shown in this chapter compares scores one pair at a time. If you meas-
ure multiple abilities, there are many possible pairs of scores that might differ, and the probability 
that at least one pair differs by a large amount goes up when you measure more and more abilities. 
Although strongly correlated scores tend to be similar, uneven profiles are far more common than 
completely flat profiles. For example, if five abilities correlate at 0.60 (a common correlation size in 
the ability domain), about 94% of people will have at least one score difference of 10 or more. About 
54% of people will have at least one pair of scores that differ by 20 or more, and 15% will have at least 
one pair of scores that differ by 30 or more.

Prediction
Sometimes psychologists are asked to forecast distal outcomes, such as the probability that a young 
child will eventually graduate from college. In such cases, most of us shy away from providing 
numerical estimates, even if we know how. Rarely do we have enough confidence in our causal 
models to take such estimates seriously. However, just as it is an error to be overconfident, it is a 
disservice to be coy when one does, in fact, have relevant information. Because we choose not to 
make a prediction does not mean that prediction errors will not be made. Decisions on a child’s 
behalf are going to be made with or without our input. When called upon to make a prediction, 
we have an opportunity to help decision-makers think about prediction and uncertainty in more 
sophisticated ways.

Statistical prediction tools are appropriate to the degree that the underlying assumptions are 
consistent with one’s conceptual causal model. Out-of-the-box prediction models such as regression 
often involve assumptions that are easy to overlook. We tend to use these tools mostly for back-of-
the-envelope calculations because we rarely have enough confidence in our causal model that we 
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believe that the statistics will be highly accurate. Approximate answers that are treated as such can 
prevent professionals from making gross errors of interpretation. Of course, excessive confidence in 
one’s statistics is equally dangerous, if not more so.

However, there is a kind of “prediction” that is really more a tool for explanation. When we use 
intelligence scores to help explain a child’s academic performance, we are using, at least implicitly, 
a “prediction” equation. For example, if a child’s IQ score is very low (e.g., 60), we “predict” that the 
child will also have poor academic skills. If the child’s academic skills are indeed poor, we reason 
that the low IQ is a salient (but by no means only) factor in the explanation of the poor performance. 
If the child’s academic skills are average despite low intelligence, the prediction has not “failed” but 
has actually revealed something important: something has gone especially right in the child’s life. 
Now it is our job to understand what that something is.

Simple linear regression is a statistical procedure in which one continuous variable predicts 
another. Suppose we wish to forecast the likely range of IQ scores in a school-age child three years 
from now. The current score is 75. The exact stability coefficient depends on the test, ages, and 
population, but we can use the corrected stability coefficient of 0.84 from Watkins and Smith (2013) 
as a rough estimate. Over the short term, carryover effects need to be taken into account. However, 
in the Watkins and Smith (2013) study, the mean scores taken almost three years apart were essen-
tially the same.

Calculating Predicted Values Ŷ

Although the notation is a bit different, the regression formula is the familiar formula for a line in 
an introductory algebra class:

	 0 1Ŷ b b X 	

where:

 Predicted value ofY Y



0 Intercept 0Yb X

b1 = Slope

The equations for the coefficients are:

	
1

Y
XY

X

b
	

0 1Y Xb b

If both variables are z-scores (i.e., μX = μY = 0 and σX = σY = 1), b1 = ρXY and b0 = 0, making the 
regression equation is a little easier to remember:

	
ˆ

Y XY XZ z
	

That is, the predictor z-score times the correlation coefficient is the predicted z-score of the crite-
rion variable. Memorizing this formula in combination with the z-score formula can come in handy 
for back-of-the-envelope estimations that can be performed anywhere. For example, suppose that 
X = 85, and X and Y correlate at 0.84. We can calculate the estimated score for Y like so:

	
X

75 100 5z
15 3

X

X

X u
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5.84ˆ 1.4
3Y XY XZ z

	

	
ˆ ˆ ì 1.4 15 100 79Y Y YY Z 	

Calculating the Standard Error of the Estimate (σE)
The fact that ˆ 79Y  is our point estimate is interesting, but it would be better if we had a sense of 
how precise the estimate is. The SEE is the standard deviation of the prediction errors:

	

2

2

1

15 1 0.84
8.14

E Y XY

	

Conditional Distributions
Conditional distributions allow us to give approximate answers to questions such as, “What propor-
tion of school-age children with an IQ of 75 will score at least in the average range (90 or better) 
when reevaluated three years later?” A conditional distribution is the distribution of one variable 
given certain conditions. In this case, we would like to know the distribution of Y, given a particular 
value of X. If IQ1 = 75, the conditional distribution of IQ2 is assumed to be normal, with a mean of 


2 79IQ  and a standard deviation of σe = 8.14.
The normal cumulative distribution function will return the proportion of IQ2 scores less than 90. 

Subtracting this quantity from 1 gives the approximate answer to the question: about 9% of children 
with an IQ of 75 will obtain an IQ of 90 or higher about three years later (see Figure 10.10).

FIGURE 10.10 About 9% of children who score 75 on an IQ test will score 90 or better three years later.
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SUMMARY

This chapter illuminates the underlying principles of measurement 
and psychometrics that are useful for the practitioner to know and 
understand. Guidance was provided in how foundational statistical 

concepts and analyses could be applied and utilized by practitioners 
conducting neuropsychological evaluations and completing interpre-
tation via a neuropsychological interpretive and psychometric lens.
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