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Preface

I decided to write this book in order to convince the next generation of students and
researchers that data analysis is a powerful tool for answering many important and
interesting questions about societies and human behavior. Today’s societies confront
a number of challenging problems, including those in economics, politics, education,
and public health. Data-driven approaches are useful for solving these problems, and
we need more talented individuals to work in this area. I hope that this book will
entice young students and researchers into the fast-growing field of quantitative social
science.

This book grew out of the two undergraduate courses I have taught at Princeton over
the last several years: POL 245: Visualizing Data and POL 345: Quantitative Analysis
and Politics. While teaching these courses, I realized that students need to be exposed
to exciting ideas from actual quantitative social science research as early in the course
as possible. For this reason, unlike traditional introductory statistics textbooks, this
book features data analysis from the very beginning, using examples directly taken
from published social science research. The book provides readers with extensive data
analysis experience before introducing probability and statistical theories. The idea is
that by the time they reach those challenging chapters, readers will understand why
those materials are necessary in order to conduct quantitative social science research.

The book starts with a discussion of causality in both experimental and obser-
vational studies using the examples of racial discrimination and get-out-the-vote
campaigns. We then cover measurement and prediction as two other primary goals
of data analysis in social science research. The book also includes a chapter on the
analysis of textual, network, and spatial data, giving readers a glimpse of modern
quantitative social science research. Probability and statistical theories are introduced
after these data analysis chapters. The mathematical level of the book is kept to
a minimum, and neither calculus nor linear algebra is used. However, the book
introduces probability and statistical theories in a conceptually rigorous manner so
that readers can understand the underlying logic.

This book would not exist without support from a number of individuals. I would
like to thank my colleagues at Princeton, especially those in the Dean of the College’s
office and the McGraw Center for Teaching and Learning, for their generous support.
I was one of the first beneficiaries of the 250th Anniversary Fund for Teaching
Innovation in Undergraduate Education. I thank Liz Colagiuri, Khristina Gonzalez,
Lisa Herschbach, Clayton Marsh, Diane McKay, and Nic Voge, who trusted my
ambitious vision of how introductory data analysis and statistics should be taught.



xviii Preface

They allowed me to design a course at the Freshman Scholars Institute (FSI), and many
of the ideas in this book were born there. The FSI is a great diversity initiative for
first-generation college students, and I am proud to be a part of it. I am also grateful
to Princeton University administrators for their generous support for my teaching
initiatives. They include Jill Dolan, Chris Eisgruber, Dave Lee, Nolan McCarty, Debbie
Prentice, and Val Smith.

I especially thankmy coinstructors who helpedme develop thematerials included in
this book. James Lo, Jonathan Olmsted, and Will Lowe made significant contributions
to POL 245 taught at FSI. I was fortunate to have an amazing group of graduate students
who served as teaching assistants for my courses. They include Alex Acs, Jaquilyn
Waddell Boie, Will Bullock, Munji Choi, Winston Chou, Elisha Cohen, Brandon de
la Cuesta, Ted Enamorado, Matt Incantalupo, Tolya Levshin, Asya Magazinnik, Carlos
Velasco Rivera, Alex Tarr, Bella Wang, and Teppei Yamamoto, several of whom won
teaching awards for their incredible work. Evan Chow and Hubert Jin contributed to
the creation of swirl exercises. Other students, including Alessia Azermadhi, Naoki
Egami, Tyler Pratt, and Arisa Wada, helped me develop materials at various stages of
this book project.

During the production phase of this book, the following individuals gaveme detailed
comments and suggestions that have significantly improved the presentation: Jaquilyn
Waddell Boie, Lauren Konken, Katie McCabe, Grace Rehaut, Ruby Shao, and Tyler
Simko. Without their contributions, this book would have looked quite different. I also
thank at least several hundred students at Princeton and many other institutions who
used an earlier version of this book. Their extensive feedback has helped me revise the
manuscript. I also thank Neal Beck, Andy Hall, Ryan Moore, and Marc Ratkovic for
their comments on earlier versions of the manuscript. I wish to thank Eric Crahan and
Brigitte Pelner of Princeton University Press for guiding me through the publication
process.

Several people had a significant impact on how this book is written. My graduate
school adviser, Gary King, taught me everything, from how to conduct quantitative
social science research to how to teach statistics to social scientists. Although more
than a decade has passed since I left Harvard, Gary has always been someone to whom
I can turn for advice and support. Three of my Princeton colleagues—Christina Davis,
Amaney Jamal, and Evan Liebenman—formed the team “old dogs learning new tricks”
and took the three-course graduate quantitative methods sequence. Their willingness
to patiently sit through my lectures gave me new motivation. They also set a great
example for young researchers that even senior scholars should continue learning.
Interactions with them during those classes gave me new insights about how statistical
methods should be taught.

My deepest gratitude goes to my family. My mother, Fumiko, my father, Takashi,
and my brother, Mineki, have always encouraged me to pursue my dreams regardless
of what they are. Although we now live on opposite sides of the globe, every day I
feel lucky to have such a wonderful family. My parents-in-law, Al and Carole Davis,
have been supportive of me since the mid-1990s when I first came to the United States
without being able to speak or understand much English. They have always made me
feel at home and part of their family. My two wonderful children, Keiji and Misaki,
have been a source of joy and happiness. However difficult my work is, their beautiful
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smiles remind me what the most important things are in my life. Finally, I dedicate
this book to my wife, Christina, who has been the best partner and a constant source
of inspiration for more than two decades. Christina encouraged me to write this book,
and as always I am glad to have followed her advice. Even though one never observes
counterfactuals, I can say with confidence that I have lived and will continue to live life
to the fullest because of our partnership.

Kosuke Imai
November 2016

Princeton, New Jersey
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Chapter 1

Introduction

In God we trust; all others must bring data.
— William Edwards Deming

Quantitative social science is an interdisciplinary field encompassing a large number
of disciplines, including economics, education, political science, public policy, psy-
chology, and sociology. In quantitative social science research, scholars analyze data
to understand and solve problems about society and human behavior. For example,
researchers examine racial discrimination in the labor market, evaluate the impact
of new curricula on students’ educational achievements, predict election outcomes,
and analyze social media usage. Similar data-driven approaches have been taken
up in other neighboring fields such as health, law, journalism, linguistics, and even
literature. Because social scientists directly investigate a wide range of real-world issues,
the results of their research have enormous potential to directly influence individual
members of society, government policies, and business practices.

Over the last couple of decades, quantitative social science has flourished in a
variety of areas at an astonishing speed. The number of academic journal articles
that present empirical evidence from data analysis has soared. Outside academia,
many organizations—including corporations, political campaigns, news media, and
government agencies—increasingly rely on data analysis in their decision-making
processes. Two transformative technological changes have driven this rapid growth of
quantitative social science. First, the Internet has greatly facilitated the data revolution,
leading to a spike in the amount and diversity of available data. Information sharing
makes it possible for researchers and organizations to disseminate numerous data sets
in digital form. Second, the computational revolution, in terms of both software and
hardware, means that anyone can conduct data analysis using their personal computer
and favorite data analysis software.

As a direct consequence of these technological changes, the sheer volume of data
available to quantitative social scientists has rapidly grown. In the past, researchers
largely relied upon data published by governmental agencies (e.g., censuses, election
outcomes, and economic indicators) as well as a small number of data sets collected
by research groups (e.g., survey data from national election studies and hand-coded
data sets about war occurrence and democratic institutions). These data sets still
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play an important role in empirical analysis. However, the wide variety of new
data has significantly expanded the horizon of quantitative social science research.
Researchers are designing and conducting randomized experiments and surveys on
their own. Under pressure to increase transparency and accountability, government
agencies are making more data publicly available online. For example, in the United
States, anyone can download detailed data on campaign contributions and lobbying
activities to their personal computers. In Nordic countries like Sweden, a wide range
of registers, including income, tax, education, health, and workplace, are available for
academic research.

New data sets have emerged across diverse areas. Detailed data about consumer
transactions are available through electronic purchasing records. International trade
data are collected at the product level between many pairs of countries over sev-
eral decades. Militaries have also contributed to the data revolution. During the
Afghanistan war in the 2000s, the United States and international forces gathered
data on the geo-location, timing, and types of insurgent attacks and conducted data
analysis to guide counterinsurgency strategy. Similarly, governmental agencies and
nongovernmental organizations collected data on civilian casualties from the war.
Political campaigns use data analysis to devise votermobilization strategies by targeting
certain types of voters with carefully selected messages.

These data sets also come in varying forms. Quantitative social scientists are
analyzing digitized texts as data, including legislative bills, newspaper articles, and
the speeches of politicians. The availability of social media data through websites,
blogs, tweets, SMS messaging, and Facebook has enabled social scientists to explore
how people interact with one another in the online sphere. Geographical information
system (GIS) data sets are also widespread. They enable researchers to analyze the
legislative redistricting process or civil conflict with attention paid to spatial loca-
tion. Others have used satellite imagery data to measure the level of electrification
in rural areas of developing countries. While still rare, images, sounds, and even
videos can be analyzed using quantitative methods for answering social science
questions.

Together with the revolution of information technology, the availability of such
abundant and diverse data means that anyone, from academics to practitioners, from
business analysts to policy makers, and from students to faculty, can make data-driven
discoveries. In the past, only statisticians and other specialized professionals conducted
data analysis. Now, everyone can turn on their personal computer, download data
from the Internet, and analyze them using their favorite software. This has led to
increased demands for accountability to demonstrate policy effectiveness. In order to
secure funding and increase legitimacy, for example, nongovernmental organizations
and governmental agencies must now demonstrate the efficacy of their policies and
programs through rigorous evaluation.

This shift towards greater transparency and data-driven discovery requires that
students in the social sciences learn how to analyze data, interpret the results, and
effectively communicate their empirical findings. Traditionally, introductory statistics
courses have focused on teaching students basic statistical concepts by having them
conduct straightforward calculations with paper and pencil or, at best, a scientific
calculator. Although these concepts are still important and covered in this book, this
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traditional approach cannot meet the current demands of society. It is simply not
sufficient to achieve “statistical literacy” by learning about common statistical concepts
and methods. Instead, all students in the social sciences should acquire basic data
analysis skills so that they can exploit the ample opportunities to learn from data and
make contributions to society through data-driven discovery.

The belief that everyone should be able to analyze data is the main motivation for
writing this book. The book introduces the three elements of data analysis required
for quantitative social science research: research contexts, programming techniques,
and statistical methods. Any of these elements in isolation is insufficient. Without
research contexts, we cannot assess the credibility of assumptions required for data
analysis and will not be able to understand what the empirical findings imply. Without
programming techniques, we will not be able to analyze data and answer research ques-
tions. Without the guidance of statistical principles, we cannot distinguish systematic
patterns, known as signals, from idiosyncratic ones, known as noise, possibly leading
to invalid inference. (Here, inference refers to drawing conclusions about unknown
quantities based on observed data.) This book demonstrates the power of data analysis
by combining these three elements.

1.1 Overview of the Book

This book is written for anyone who wishes to learn data analysis and statistics for
the first time. The target audience includes researchers, undergraduate and graduate
students in social science and other fields, as well as practitioners and even ambitious
high-school students. The book has no prerequisite other than some elementary
algebra. In particular, readers do not have to possess knowledge of calculus or
probability. No programming experience is necessary, though it can certainly be
helpful. The book is also appropriate for those who have taken a traditional “paper-
and-pencil” introductory statistics course where little data analysis is taught. Through
this book, students will discover the excitement that data analysis brings. Those who
want to learn R programming might also find this book useful, although here the
emphasis is on how to use R to answer quantitative social science questions.

As mentioned above, the unique feature of this book is the presentation of pro-
gramming techniques and statistical concepts simultaneously through analysis of data
sets taken directly from published quantitative social science research. The goal is
to demonstrate how social scientists use data analysis to answer important questions
about societal problems and human behavior. At the same time, users of the book will
learn fundamental statistical concepts and basic programming skills. Most importantly,
readers will gain experience with data analysis by examining approximately forty
data sets.

The book consists of eight chapters. The current introductory chapter explains
how to best utilize the book and presents a brief introduction to R, a popular
open-source statistical programming environment. R is freely available for download
and runs on Macintosh, Windows, and Linux computers. Readers are strongly en-
couraged to use RStudio, another freely available software package that has numerous
features to make data analysis easier. This chapter ends with two exercises that are
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designed to help readers practice elementary R functionalities using data sets from
published social science research. All data sets used in this book are freely available for
download via links from http://press.princeton.edu/qss/. Links to other
useful materials, such as the review exercises for each chapter, can also be found on
the website. With the exception of chapter 5, the book focuses on the most basic
syntax of R and does not introduce the wide range of additional packages that are
available. However, upon completion of this book, readers will have acquired enough
R programming skills to be able to utilize these packages.

Chapter 2 introduces causality, which plays an essential role in social science
research whenever we wish to find out whether a particular policy or program changes
an outcome of interest. Causality is notoriously difficult to study because we must infer
counterfactual outcomes that are not observable. For example, in order to understand
the existence of racial discrimination in the labor market, we need to know whether an
African-American candidate who did not receive a job offer would have done so if they
were white. We will analyze the data from a well-known experimental study in which
researchers sent the résumés of fictitious job applicants to potential employers after
randomly choosing applicants’ names to sound either African-American or Caucasian.
Using this study as an application, the chapter will explain how the randomization
of treatment assignment enables researchers to identify the average causal effect of
the treatment.

Additionally, readers will learn about causal inference in observational studies where
researchers do not have control over treatment assignment. The main application is a
classic study whose goal was to figure out the impact of increasing the minimum wage
on employment. Many economists argue that a minimum-wage increase can reduce
employment because employers must pay higher wages to their workers and are there-
fore made to hire fewer workers. Unfortunately, the decision to increase the minimum
wage is not random, but instead is subject to many factors, like economic growth,
that are themselves associated with employment. Since these factors influence which
companies find themselves in the treatment group, a simple comparison between those
who received treatment and those who did not can lead to biased inference.

We introduce several strategies that attempt to reduce this type of selection bias
in observational studies. Despite the risk that we will inaccurately estimate treatment
effects in observational studies, the results of such studies are often easier to generalize
than those obtained from randomized controlled trials. Other examples in chapter 2
include a field experiment concerning social pressure in get-out-the-vote mobilization.
Exercises then include a randomized experiment that investigates the causal effect
of small class size in early education as well as a natural experiment about political
leader assassination and its effects. In terms of R programming, chapter 2 covers logical
statements and subsetting.

Chapter 3 introduces the fundamental concept of measurement. Accurate mea-
surement is important for any data-driven discovery because bias in measurement
can lead to incorrect conclusions and misguided decisions. We begin by considering
how to measure public opinion through sample surveys. We analyze the data from a
study in which researchers attempted to measure the degree of support among Afghan
citizens for international forces and the Taliban insurgency during the Afghanistan
war. The chapter explains the power of randomization in survey sampling. Specifically,

http://press.princeton.edu/qss/


1.1 Overview of the Book 5

random sampling of respondents from a population allows us to obtain a representative
sample. As a result, we can infer the opinion of an entire population by analyzing one
small representative group. We also discuss the potential biases of survey sampling.
Nonresponses can compromise the representativeness of a sample. Misreporting poses
a serious threat to inference, especially when respondents are asked sensitive questions,
such as whether they support the Taliban insurgency.

The second half of chapter 3 focuses on the measurement of latent or unobservable
concepts that play a key role in quantitative social science. Prominent examples of such
concepts include ability and ideology. In the chapter, we study political ideology. We
first describe a model frequently used to infer the ideological positions of legislators
from roll call votes, and examine how the US Congress has polarized over time. We
then introduce a basic clustering algorithm, k-means, that makes it possible for us to
find groups of similar observations. Applying this algorithm to the data, we find that in
recent years, the ideological division within Congress has been mainly characterized by
the party line. In contrast, we find some divisions within each party in earlier years. This
chapter also introduces various measures of the spread of data, including quantiles,
standard deviation, and the Gini coefficient. In terms of R programming, the chapter
introduces various ways to visualize univariate and bivariate data. The exercises include
the reanalysis of a controversial same-sex marriage experiment, which raises issues of
academic integrity while illustrating methods covered in the chapter.

Chapter 4 considers prediction. Predicting the occurrence of certain events is
an essential component of policy and decision-making processes. For example, the
forecasting of economic performance is critical for fiscal planning, and early warnings
of civil unrest allow foreign policy makers to act proactively. The main application of
this chapter is the prediction of US presidential elections using preelection polls. We
show that we can make a remarkably accurate prediction by combining multiple polls
in a straightforward manner. In addition, we analyze the data from a psychological
experiment in which subjects are shown the facial pictures of unknown political
candidates and asked to rate their competence. The analysis yields the surprising result
that a quick facial impression can predict election outcomes. Through this example,
we introduce linear regression models, which are useful tools to predict the values of
one variable based on another variable. We describe the relationship between linear
regression and correlation, and examine the phenomenon called “regression towards
the mean,” which is the origin of the term “regression.”

Chapter 4 also discusses when regression models can be used to estimate causal
effects rather than simply make predictions. Causal inference differs from standard
prediction in requiring the prediction of counterfactual, rather than observed, out-
comes using the treatment variable as the predictor. We analyze the data from a
randomized natural experiment in India where randomly selected villages reserved
some of the seats in their village councils for women. Exploiting this randomization, we
investigate whether or not having female politicians affects policy outcomes, especially
concerning the policy issues female voters care about. The chapter also introduces
the regression discontinuity design for making causal inference in observational
studies. We investigate how much of British politicians’ accumulated wealth is due
to holding political office. We answer this question by comparing those who barely
won an election with those who narrowly lost it. The chapter introduces powerful but
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challenging R programming concepts: loops and conditional statements. The exercises
at the end of the chapter include an analysis of whether betting markets can precisely
forecast election outcomes.

Chapter 5 is about the discovery of patterns from data of various types. When
analyzing “big data,” we need automated methods and visualization tools to iden-
tify consistent patterns in the data. First, we analyze texts as data. Our primary
application here is authorship prediction of The Federalist Papers, which formed
the basis of the US Constitution. Some of the papers have known authors while
others do not. We show that by analyzing the frequencies of certain words in the
papers with known authorship, we can predict whether Alexander Hamilton or
James Madison authored each of the papers with unknown authorship. Second, we
show how to analyze network data, focusing on explaining the relationships among
units. Within marriage networks in Renaissance Florence, we quantify the key role
played by the Medici family. As a more contemporary example, various measures of
centrality are introduced and applied to social media data generated by US senators
on Twitter.

Finally in chapter 5, we introduce geo-spatial data. We begin by discussing the
classic spatial data analysis conducted by John Snow to examine the cause of the
1854 cholera outbreak in London. We then demonstrate how to visualize spatial data
through the creation of maps, using US election data as an example. For spatial–
temporal data, we create a series of maps as an animation in order to visually
characterize changes in spatial patterns over time. Thus, the chapter applies various
data visualization techniques using several specialized R packages.

Chapter 6 shifts the focus from data analysis to probability, a unified mathematical
model of uncertainty. While earlier chapters examine how to estimate parameters and
make predictions, they do not discuss the level of uncertainty in empirical findings, a
topic that chapter 7 introduces. Probability is important because it lays a foundation
for statistical inference, the goal of which is to quantify inferential uncertainty. We
begin by discussing the question of how to interpret probability from two dominant
perspectives, frequentist and Bayesian. We then provide mathematical definitions of
probability and conditional probability, and introduce several fundamental rules of
probability. One such rule is called Bayes’ rule. We show how to use Bayes’ rule and
accurately predict individual ethnicity using surname and residence location when no
survey data are available.

This chapter also introduces the important concepts of random variables and
probability distributions.We use these tools to add ameasure of uncertainty to election
predictions that we produced in chapter 4 using preelection polls. Another exercise
adds uncertainty to the forecasts of election outcomes based on betting market data.
The chapter concludes by introducing two fundamental theorems of probability: the
law of large numbers and the central limit theorem. These two theorems are widely
applicable and help characterize how our estimates behave over repeated sampling
as sample size increases. The final set of exercises then addresses two problems: the
German cryptography machine from World War II (Enigma), and the detection of
election fraud in Russia.

Chapter 7 discusses how to quantify the uncertainty of our estimates and pre-
dictions. In earlier chapters, we introduced various data analysis methods to find
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patterns in data. Building on the groundwork laid in chapter 6, chapter 7 thoroughly
explains how certain we should be about such patterns. This chapter shows how
to distinguish signals from noise through the computation of standard errors and
confidence intervals as well as the use of hypothesis testing. In other words, the chapter
concerns statistical inference. Our examples come from earlier chapters, and we focus
on measuring the uncertainty of these previously computed estimates. They include
the analysis of preelection polls, randomized experiments concerning the effects of
class size in early education on students’ performance, and an observational study
assessing the effects of a minimum-wage increase on employment. When discussing
statistical hypothesis tests, we also draw attention to the dangers of multiple testing and
publication bias. Finally, we discuss how to quantify the level of uncertainty about the
estimates derived from a linear regression model. To do this, we revisit the randomized
natural experiment of female politicians in India and the regression discontinuity
design for estimating the amount of wealth British politicians are able to accumulate
by holding political office.

The final chapter concludes by briefly describing the next steps readers might take
upon completion of this book. The chapter also discusses the role of data analysis in
quantitative social science research.

1.2 How to Use this Book

In this section, we explain how to use this book, which is based on the following
principle:

One can learn data analysis only by doing, not by reading.

This book is not just for reading. The emphasis must be placed on gaining experience
in analyzing data. This is best accomplished by trying out the code in the book on one’s
own, playing with it, and working on various exercises that appear at the end of each
chapter. All code and data sets used in the book are freely available for download via
links from http://press.princeton.edu/qss/.

The book is cumulative. Later chapters assume that readers are already familiar with
most of the materials covered in earlier parts. Hence, in general, it is not advisable
to skip chapters. The exception is chapter 5, “Discovery,” the contents of which are
not used in subsequent chapters. Nevertheless, this chapter contains some of the
most interesting data analysis examples of the book and readers are encouraged to
study it.

The book can be used for course instruction in a variety of ways. In a traditional
introductory statistics course, one can assign the book, or parts of it, as supplementary
reading that provides data analysis exercises. The book is best utilized in a data analysis
course where an instructor spends less time on lecturing to students and instead works
interactively with students on data analysis exercises in the classroom. In such a course,
the relevant portion of the book is assigned prior to each class. In the classroom, the
instructor reviews new methodological and programming concepts and then applies
them to one of the exercises from the book or any other similar application of their
choice. Throughout this process, the instructor can discuss the exercises interactively
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with students, perhaps using the Socratic method, until the class collectively arrives
at a solution. After such a classroom discussion, it would be ideal to follow up with a
computer lab session, in which a small number of students, together with an instructor,
work on another exercise.

This teaching format is consistent with the “particular general particular” principle.1
This principle states that an instructor should first introduce a particular example to
illustrate a new concept, then provide a general treatment of it, and finally apply it to
another particular example. Reading assignments introduce a particular example and a
general discussion of new concepts to students. Classroom discussion then allows the
instructor to provide another general treatment of these concepts and then, together
with students, apply them to another example. This is an effective teaching strategy that
engages students with active learning and builds their ability to conduct data analysis
in social science research. Finally, the instructor can assign another application as a
problem set to assess whether students have mastered the materials. To facilitate this,
for each chapter instructors can obtain, upon request, access to a private repository that
contains additional exercises and their solutions.

In terms of the materials to cover, an example of the course outline for a
15-week-long semester is given below. We assume that there are approximately two
hours of lectures and one hour of computer lab sessions each week. Having hands-on
computer lab sessions with a small number of students, in which they learn how to
analyze data, is essential.

Chapter title Chapter number Weeks
Introduction 1 1
Causality 2 2–3
Measurement 3 4–5
Prediction 4 6–7
Discovery 5 8–9
Probability 6 10–12
Uncertainty 7 13–15

For a shorter course, there are at least two ways to reduce the material. One option is
to focus on aspects of data science and omit statistical inference. Specifically, from the
above outline, we can remove chapter 6, “Probability,” and chapter 7, “Uncertainty.”
An alternative approach is to skip chapter 5, “Discovery,” which covers the analysis
of textual, network, and spatial data, and include the chapters on probability and
uncertainty.

Finally, to ensure mastery of the basic methodological and programming concepts
introduced in each chapter, we recommend that users first read a chapter, practice all
of the code it contains, and upon completion of each chapter, try the online review
questions before attempting to solve the associated exercises. These review questions

1 Frederick Mosteller (1980) “Classroom and platform performance.” American Statistician, vol. 34, no. 1
(February), pp. 11–17.



1.2 How to Use this Book 9

Table 1.1. The swirl Review Exercises.

Chapter swirl lesson Sections covered

1: Introduction
INTRO1 1.3
INTRO2 1.3

2: Causality
CAUSALITY1 2.1–2.4
CAUSALITY2 2.5–2.6

3: Measurement
MEASUREMENT1 3.1–3.4
MEASUREMENT2 3.5–3.7

4: Prediction
PREDICTION1 4.1
PREDICTION2 4.2
PREDICTION3 4.3

5: Discovery
DISCOVERY1 5.1
DISCOVERY2 5.2
DISCOVERY3 5.3

6: Probability
PROBABILITY1 6.1–6.3
PROBABILITY2 6.4–6.5

7: Uncertainty
UNCERTAINTY1 7.1
UNCERTAINTY2 7.2
UNCERTAINTY3 7.3

Note: The table shows the correspondence between the chapters and sections of
the book and each set of swirl review exercises.

are available as swirl lessons via links from http://press.princeton.edu/
qss/, and can be answered within R. Instructors are strongly encouraged to assign
these swirl exercises prior to each class so that students learn the basics before moving
on to more complicated data analysis exercises. To start the online review questions,
users must first install the swirl package (see section 1.3.7) and then the lessons for this
book using the following three lines of commands within R. Note that this installation
needs to be done only once.

install.packages("swirl") # install the package

library(swirl) # load the package

install_course_github("kosukeimai", "qss-swirl") # install the course

Table 1.1 lists the available set of swirl review exercises along with their correspond-
ing chapters and sections. To start a swirl lesson for review questions, we can use the
following command.

library(swirl)

swirl()

More information about swirl is available at http://swirlstats.com/.

http://press.princeton.edu/qss/
http://swirlstats.com/
http://press.princeton.edu/qss/
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1.3 Introduction to R

This section provides a brief, self-contained introduction to R that is a prerequisite
for the remainder of this book. R is an open-source statistical programming environ-
ment, which means that anyone can download it for free, examine source code, and
make their own contributions. R is powerful and flexible, enabling us to handle a variety
of data sets and create appealing graphics. For this reason, it is widely used in academia
and industry. The New York Times described R as

a popular programming language used by a growing number of data analysts
inside corporations and academia. It is becoming their lingua franca. . .whether
being used to set ad prices, find new drugs more quickly or fine-tune financial
models. Companies as diverse as Google, Pfizer, Merck, Bank of America, the
InterContinental Hotels Group and Shell use it. . . . “The great beauty of R is that
you can modify it to do all sorts of things,” said Hal Varian, chief economist at
Google. “And you have a lot of prepackaged stuff that’s already available, so
you’re standing on the shoulders of giants.”2

To obtain R, visit https://cran.r-project.org/ (The Comprehensive R
Archive Network or CRAN), select the link that matches your operating system, and
then follow the installation instructions.

While a powerful tool for data analysis, R’s main cost from a practical viewpoint
is that it must be learned as a programming language. This means that we must
master various syntaxes and basic rules of computer programming. Learning computer
programming is like becoming proficient in a foreign language. It requires a lot of
practice and patience, and the learning process may be frustrating. Through numerous
data analysis exercises, this book will teach you the basics of statistical programming,
which then will allow you to conduct data analysis on your own. The core principle of
the book is that we can learn data analysis only by analyzing data.

Unless you have prior programming experience (or have a preference for another
text editor such as Emacs), we recommend that you use RStudio. RStudio is an open-
source and free program that greatly facilitates the use of R. In one window, RStudio
gives users a text editor to write programs, a graph viewer that displays the graphics
we create, the R console where programs are executed, a help section, and many
other features. It may look complicated at first, but RStudio can make learning how
to use R much easier. To obtain RStudio, visit http://www.rstudio.com/ and
follow the download and installation instructions. Figure 1.1 shows a screenshot of
RStudio.

In the remainder of this section, we cover three topics: (1) using R as a calculator,
(2) creating and manipulating various objects in R, and (3) loading data sets into R.

1.3.1 ARITHMETIC OPERATIONS
We begin by using R as a calculator with standard arithmetic operators. In figure 1.1,

the left-hand window of RStudio shows the R console where we can directly enter R

2 Vance, Ashlee. 2009. “Data Analysts Captivated by R’s Power.” New York Times, January 6.

https://cran.r-project.org/
http://www.rstudio.com/
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Figure 1.1. Screenshot of RStudio (version 1.0.44). The upper-left window displays a
script that contains code. The lower-left window shows the console where R commands
can be directly entered. The upper-right window lists R objects and a history of executed
R commands. Finally, the lower-right window enables us to view plots, data sets, files
and subdirectories in the working directory, R packages, and help pages.

commands. In this R console, we can type in, for example, 5 + 3, then hit Enter on
our keyboard.

5 + 3

## [1] 8

R ignores spaces, and so 5+3 will return the same result. However, we added a space
before and after the operator + to make it easier to read. As this example illustrates, this
book displays R commands followed by the outputs they would produce if entered in
the R console. These outputs begin with ## to distinguish them from the R commands
that produced them, though this mark will not appear in the R console. Finally, in this
example, [1] indicates that the output is the first element of a vector of length 1 (we
will discuss vectors in section 1.3.3). It is important for readers to try these examples
on their own. Remember that we can learn programming only by doing! Let’s try other
examples.

5 - 3

## [1] 2

5 / 3

## [1] 1.666667

5 ^ 3
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## [1] 125

5 * (10 - 3)

## [1] 35

sqrt(4)

## [1] 2

The final expression is an example of a so-called function, which takes an input
(or multiple inputs) and produces an output. Here, the function sqrt() takes a
nonnegative number and returns its square root. As discussed in section 1.3.4, R has
numerous other functions, and users can even make their own functions.

1.3.2 OBJECTS
R can store information as an object with a name of our choice. Once we have created

an object, we just refer to it by name. That is, we are using objects as “shortcuts” to
some piece of information or data. For this reason, it is important to use an intuitive
and informative name. The name of our object must follow certain restrictions.
For example, it cannot begin with a number (but it can contain numbers). Object
names also should not contain spaces. We must avoid special characters such as %
and $, which have specific meanings in R. In RStudio, in the upper-right window,
called Environment (see figure 1.1), we will see the objects we created. We use the
assignment operator <- to assign some value to an object.

For example, we can store the result of the above calculation as an object named
result, and thereafter we can access the value by referring to the object’s name. By
default, Rwill print the value of the object to the console if we just enter the object name
and hit Enter. Alternatively, we can explicitly print it by using the print() function.

result <- 5 + 3

result

## [1] 8

print(result)

## [1] 8

Note that if we assign a different value to the same object name, then the value of
the object will be changed. As a result, we must be careful not to overwrite previously
assigned information that we plan to use later.

result <- 5 - 3

result

## [1] 2
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Another thing to be careful about is that object names are case sensitive. For
example, Hello is not the same as either hello or HELLO. As a consequence, we
receive an error in the R console when we type Result rather than result, which is
defined above.

Result

## Error in eval(expr, envir, enclos): object ‘Result’ not found

Encountering programming errors or bugs is part of the learning process. The tricky
part is figuring out how to fix them. Here, the error message tells us that the Result
object does not exist. We can see the list of existing objects in the Environment
tab in the upper-right window (see figure 1.1), where we will find that the correct
object is result. It is also possible to obtain the same list by using the ls()
function.

So far, we have assigned only numbers to an object. But R can represent various
other types of values as objects. For example, we can store a string of characters by
using quotation marks.

kosuke <- "instructor"

kosuke

## [1] "instructor"

In character strings, spacing is allowed.

kosuke <- "instructor and author"

kosuke

## [1] "instructor and author"

Notice that R treats numbers like characters when we tell it to do so.

Result <- "5"

Result

## [1] "5"

However, arithmetic operations like addition and subtraction cannot be used for
character strings. For example, attempting to divide or take a square root of a character
string will result in an error.

Result / 3

## Error in Result/3: non-numeric argument to binary operator
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sqrt(Result)

## Error in sqrt(Result): non-numeric argument to mathematical function

R recognizes different types of objects by assigning each object to a class. Separating
objects into classes allows R to perform appropriate operations depending on the
objects’ class. For example, a number is stored as a numeric object whereas a character
string is recognized as a character object. In RStudio, the Environment window will
show the class of an object as well as its name. The function (which by the way is
another class) class() tells us to which class an object belongs.

result

## [1] 2

class(result)

## [1] "numeric"

Result

## [1] "5"

class(Result)

## [1] "character"

class(sqrt)

## [1] "function"

There are many other classes in R, some of which will be introduced throughout this
book. In fact, it is even possible to create our own object classes.

1.3.3 VECTORS
We present the simplest (but most inefficient) way of entering data into R. Table 1.2

contains estimates of world population (in thousands) over the past several decades.
We can enter these data into R as a numeric vector object. A vector or a one-
dimensional array simply represents a collection of information stored in a specific
order. We use the function c(), which stands for “concatenate,” to enter a data vector
containing multiple values with commas separating different elements of the vector we
are creating. For example, we can enter the world population estimates as elements of
a single vector.

world.pop <- c(2525779, 3026003, 3691173, 4449049, 5320817, 6127700,

6916183)

world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183
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Table 1.2. World Population Estimates.

Year
World population

(thousands)
1950 2,525,779
1960 3,026,003
1970 3,691,173
1980 4,449,049
1990 5,320,817
2000 6,127,700
2010 6,916,183
Source: United Nations, Department

of Economic and Social Affairs, Popu-
lation Division (2013). World Population
Prospects: The 2012 Revision, DVD Edition.

We also note that the c() function can be used to combine multiple vectors.

pop.first <- c(2525779, 3026003, 3691173)

pop.second <- c(4449049, 5320817, 6127700, 6916183)

pop.all <- c(pop.first, pop.second)

pop.all

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

To access specific elements of a vector, we use square brackets [ ]. This is called
indexing. Multiple elements can be extracted via a vector of indices within square
brackets. Also within square brackets the dash, -, removes the corresponding element
from a vector. Note that none of these operations change the original vector.

world.pop[2]

## [1] 3026003

world.pop[c(2, 4)]

## [1] 3026003 4449049

world.pop[c(4, 2)]

## [1] 4449049 3026003

world.pop[-3]

## [1] 2525779 3026003 4449049 5320817 6127700 6916183

Since each element of this vector is a numeric value, we can apply arithmetic
operations to it. The operations will be repeated for each element of the vector. Let’s
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give the population estimates inmillions instead of thousands by dividing each element
of the vector by 1000.

pop.million <- world.pop / 1000

pop.million

## [1] 2525.779 3026.003 3691.173 4449.049 5320.817 6127.700

## [7] 6916.183

We can also express each population estimate as a proportion of the 1950 population
estimate. Recall that the 1950 estimate is the first element of the vector world.pop.

pop.rate <- world.pop / world.pop[1]

pop.rate

## [1] 1.000000 1.198047 1.461400 1.761456 2.106604 2.426063

## [7] 2.738238

In addition, arithmetic operations can be done using multiple vectors. For example,
we can calculate the percentage increase in population for each decade, defined as the
increase over the decade divided by its beginning population. For example, suppose
that the population was 100 thousand in one year and increased to 120 thousand in the
following year. In this case, we say, “the population increased by 20%.” To compute the
percentage increase for each decade, we first create two vectors, one without the first
decade and the other without the last decade. We then subtract the second vector from
the first vector. Each element of the resulting vector equals the population increase. For
example, the first element is the difference between the 1960 population estimate and
the 1950 estimate.

pop.increase <- world.pop[-1] - world.pop[-7]

percent.increase <- (pop.increase / world.pop[-7]) * 100

percent.increase

## [1] 19.80474 21.98180 20.53212 19.59448 15.16464 12.86752

Finally, we can also replace the values associated with particular indices by using
the usual assignment operator (<-). Below, we replace the first two elements of the
percent.increase vector with their rounded values.

percent.increase[c(1, 2)] <- c(20, 22)

percent.increase

## [1] 20.00000 22.00000 20.53212 19.59448 15.16464 12.86752

1.3.4 FUNCTIONS
Functions are important objects in R and perform a wide range of tasks. A function

often takes multiple input objects and returns an output object. We have already seen
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several functions: sqrt(), print(), class(), and c(). In R, a function generally
runs as funcname(input) where funcname is the function name and input is
the input object. In programming (and in math), we call these inputs arguments. For
example, in the syntax sqrt(4), sqrt is the function name and 4 is the argument or
the input object.

Some basic functions useful for summarizing data include length() for the
length of a vector or equivalently the number of elements it has, min() for
the minimum value, max() for the maximum value, range() for the range of
data, mean() for the mean, and sum() for the sum of the data. Right now we
are inputting only one object into these functions so we will not use argument
names.

length(world.pop)

## [1] 7

min(world.pop)

## [1] 2525779

max(world.pop)

## [1] 6916183

range(world.pop)

## [1] 2525779 6916183

mean(world.pop)

## [1] 4579529

sum(world.pop) / length(world.pop)

## [1] 4579529

The last expression gives another way of calculating the mean as the sum of all the
elements divided by the number of elements.

When multiple arguments are given, the syntax looks like funcname(input1,
input2). The order of inputs matters. That is, funcname(input1, input2) is
different from funcname(input2, input1). To avoid confusion and problems
stemming from the order in which we list arguments, it is also a good idea to
specify the name of the argument that each input corresponds to. This looks like
funcname(arg1 = input1, arg2 = input2).

For example, the seq() function can generate a vector composed of an increasing
or decreasing sequence. The first argument from specifies the number to start from;
the second argument to specifies the number at which to end the sequence; the last
argument by indicates the interval to increase or decrease by. We can create an object
for the year variable from table 1.2 using this function.
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year <- seq(from = 1950, to = 2010, by = 10)

year

## [1] 1950 1960 1970 1980 1990 2000 2010

Notice how we can switch the order of the arguments without changing the output
because we have named the input objects.

seq(to = 2010, by = 10, from = 1950)

## [1] 1950 1960 1970 1980 1990 2000 2010

Although not relevant in this particular example, we can also create a decreasing
sequence using the seq()function. In addition, the colon operator : creates a simple
sequence, beginning with the first number specified and increasing or decreasing by 1
to the last number specified.

seq(from = 2010, to = 1950, by = -10)

## [1] 2010 2000 1990 1980 1970 1960 1950

2008:2012

## [1] 2008 2009 2010 2011 2012

2012:2008

## [1] 2012 2011 2010 2009 2008

The names() function can access and assign names to elements of a vector.
Element names are not part of the data themselves, but are helpful attributes of the R
object. Below, we see that the object world.pop does not yet have the names attribute,
with names(world.pop) returning the NULL value. However, once we assign the
year as the labels for the object, each element of world.pop is printed with an
informative label.

names(world.pop)

## NULL

names(world.pop) <- year

names(world.pop)

## [1] "1950" "1960" "1970" "1980" "1990" "2000" "2010"
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world.pop

## 1950 1960 1970 1980 1990 2000 2010

## 2525779 3026003 3691173 4449049 5320817 6127700 6916183

In many situations, we want to create our own functions and use them repeatedly.
This allows us to avoid duplicating identical (or nearly identical) sets of code chunks,
making our code more efficient and easily interpretable. The function() function
can create a new function. The syntax takes the following form.

myfunction <- function(input1, input2, ..., inputN) {

DEFINE “output” USING INPUTS

return(output)

}

In this example code, myfunction is the function name, input1, input2,
..., inputN are the input arguments, and the commands within the braces { }
define the actual function. Finally, the return() function returns the output of the
function. We begin with a simple example, creating a function to compute a summary
of a numeric vector.

my.summary <- function(x){ # function takes one input

s.out <- sum(x)

l.out <- length(x)

m.out <- s.out / l.out

out <- c(s.out, l.out, m.out) # define the output

names(out) <- c("sum", "length", "mean") # add labels

return(out) # end function by calling output

}

z <- 1:10

my.summary(z)

## sum length mean

## 55.0 10.0 5.5

my.summary(world.pop)

## sum length mean

## 32056704 7 4579529

Note that objects (e.g., x, s.out, l.out, m.out, and out in the above example)
can be defined within a function independently of the environment in which the
function is being created. This means that we need not worry about using identical
names for objects inside a function and those outside it.



20 Chapter 1: Introduction

1.3.5 DATA FILES
So far, the only data we have used has been manually entered into R. But, most of

the time, we will load data from an external file. In this book, we will use the following
two data file types:

• CSV or comma-separated values files represent tabular data. This is conceptually
similar to a spreadsheet of data values like those generated by Microsoft Excel or
Google Spreadsheet. Each observation is separated by line breaks and each field
within the observation is separated by a comma, a tab, or some other character or
string.

• RData files represent a collection of R objects including data sets. These can
contain multiple R objects of different kinds. They are useful for saving
intermediate results from our R code as well as data files.

Before interacting with data files, we must ensure they reside in the working direc-
tory, which R will by default load data from and save data to. There are different ways to
change the working directory. In RStudio, the default working directory is shown in the
bottom-right window under the Files tab (see figure 1.1). Oftentimes, however, the
default directory is not the directory we want to use. To change the working directory,
click on More > Set As Working Directory after choosing the folder we want
to work from. Alternatively, we can use the RStudio pull-down menu Session >
Set Working Directory > Choose Directory... and pick the folder we
want to work from. Then, we will see our files and folders in the bottom-right window.

It is also possible to change the working directory using the setwd() function by
specifying the full path to the folder of our choice as a character string. To display the
current working directory, use the function getwd() without providing an input. For
example, the following syntax sets the working directory to qss/INTRO and confirms
the result (we suppress the output here).

setwd("qss/INTRO")

getwd()

Suppose that the United Nations population data in table 1.2 are saved as a CSV file
UNpop.csv, which resembles that below:

year, world.pop
1950, 2525779
1960, 3026003
1970, 3691173
1980, 4449049
1990, 5320817
2000, 6127700
2010, 6916183

In RStudio, we can read in or load CSV files by going to the drop-down menu in the
upper-right window (see figure 1.1) and clicking Import Dataset > From Text
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File .... Alternatively, we can use the read.csv() function. The following syntax
loads the data as a data frame object (more on this object below).

UNpop <- read.csv("UNpop.csv")

class(UNpop)

## [1] "data.frame"

On the other hand, if the same data set is saved as an object in an RData file named
UNpop.RData, then we can use the load() function, which will load all the R objects
saved in UNpop.RData into our R session. We do not need to use the assignment
operator with the load() function when reading in an RData file because the R objects
stored in the file already have object names.

load("UNpop.RData")

Note that R can access any file on our computer if the full location is specified.
For example, we can use syntax such as read.csv("Documents/qss/INTRO/
UNpop.csv") if the data file UNpop.csv is stored in the directory Documents/
qss/INTRO/. However, setting the working directory as shown above allows us to
avoid tedious typing.

A data frame object is a collection of vectors, but we can think of it like a spreadsheet.
It is often useful to visually inspect data. We can view a spreadsheet-like representation
of data frame objects in RStudio by double-clicking on the object name in the
Environment tab in the upper-right window (see figure 1.1). This will open a new
tab displaying the data. Alternatively, we can use the View() function, which as its
main argument takes the name of a data frame to be examined. Useful functions for
this object include names() to return a vector of variable names, nrow() to return the
number of rows, ncol() to return the number of columns, dim() to combine the out-
puts of ncol() and nrow() into a vector, and summary() to produce a summary.

names(UNpop)

## [1] "year" "world.pop"

nrow(UNpop)

## [1] 7

ncol(UNpop)

## [1] 2

dim(UNpop)

## [1] 7 2



22 Chapter 1: Introduction

summary(UNpop)

## year world.pop

## Min. :1950 Min. :2525779

## 1st Qu.:1965 1st Qu.:3358588

## Median :1980 Median :4449049

## Mean :1980 Mean :4579529

## 3rd Qu.:1995 3rd Qu.:5724258

## Max. :2010 Max. :6916183

Notice that the summary() function yields, for each variable in the data frame
object, the minimum value, the first quartile (or 25th percentile), the median (or
50th percentile), the third quartile (or 75th percentile), and the maximum value. See
section 2.6 for more discussion.

The $ operator is one way to access an individual variable from within a data frame
object. It returns a vector containing the specified variable.

UNpop$world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

Another way of retrieving individual variables is to use indexing inside square
brackets[ ], as done for a vector. Since a data frame object is a two-dimensional
array, we need two indexes, one for rows and the other for columns. Using brackets
with a comma [rows, columns] allows users to call specific rows and columns by
either row/column numbers or row/column names. If we use row/column numbers,
sequencing functions covered above, i.e., : and c(), will be useful. If we do not specify
a row (column) index, then the syntax will return all rows (columns). Below are some
examples, demonstrating the syntax of indexing.

UNpop[, "world.pop"] # extract the column called "world.pop"

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

UNpop[c(1, 2, 3),] # extract the first three rows (and all columns)

## year world.pop

## 1 1950 2525779

## 2 1960 3026003

## 3 1970 3691173

UNpop[1:3, "year"] # extract the first three rows of the "year" column

## [1] 1950 1960 1970
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When extracting specific observations from a variable in a data frame object, we
provide only one index since the variable is a vector.

## take elements 1, 3, 5, ... of the "world.pop" variable

UNpop$world.pop[seq(from = 1, to = nrow(UNpop), by = 2)]

## [1] 2525779 3691173 5320817 6916183

In R, missing values are represented by NA. When applied to an object with missing
values, functions may or may not automatically remove those values before performing
operations. We will discuss the details of handling missing values in section 3.2. Here,
we note that for many functions, like mean(), the argument na.rm = TRUE will
removemissing data before operations occur. In the example below, the eighth element
of the vector is missing, and one cannot calculate the mean until R has been instructed
to remove the missing data.

world.pop <- c(UNpop$world.pop, NA)

world.pop

## [1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

## [8] NA

mean(world.pop)

## [1] NA

mean(world.pop, na.rm = TRUE)

## [1] 4579529

1.3.6 SAVING OBJECTS
The objects we create in an R session will be temporarily saved in the workspace,

which is the current working environment. As mentioned earlier, the ls()function
displays the names of all objects currently stored in the workspace. In RStudio, all
objects in the workspace appear in the Environment tab in the upper-right corner.
However, these objects will be lost once we terminate the current session. This can be
avoided if we save the workspace at the end of each session as an RData file.

When we quit R, we will be asked whether we would like to save the workspace. We
should answer no to this so that we get into the habit of explicitly saving only what
we need. If we answer yes, then R will save the entire workspace as .RData in the
working directory without an explicit file name and automatically load it next time we
launch R. This is not recommended practice, because the .RData file is invisible to
users of many operating systems and R will not tell us what objects are loaded unless
we explicitly issue the ls() function.

In RStudio, we can save the workspace by clicking the Save icon in the upper-right
Environment window (see figure 1.1). Alternatively, from the navigation bar, click
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on Session > Save Workspace As..., and then pick a location to save the file.
Be sure to use the file extension .RData. To load the same workspace the next time we
start RStudio, click the Open File icon in the upper-right Environment window,
select Session > Load Workspace..., or use the load() function as before.

It is also possible to save the workspace using the save.image() function. The
file extension .RData should always be used at the end of the file name. Unless the
full path is specified, objects will be saved to the working directory. For example,
the following syntax saves the workspace as Chapter1.RData in the qss/INTRO
directory provided that this directory already exists.

save.image("qss/INTRO/Chapter1.RData")

Sometimes, we wish to save only a specific object (e.g., a data frame object)
rather than the entire workspace. This can be done with the save() function
as in save(xxx, file = "yyy.RData"), where xxx is the object name and
yyy.RData is the file name. Multiple objects can be listed, and they will be stored
as a single RData file. Here are some examples of syntax, in which we again assume the
existence of the qss/INTRO directory.

save(UNpop, file = "Chapter1.RData")

save(world.pop, year, file = "qss/INTRO/Chapter1.RData")

In other cases, we may want to save a data frame object as a CSV file rather than an
RData file. We can use the write.csv() function by specifying the object name and
the file name, as the following example illustrates.

write.csv(UNpop, file = "UNpop.csv")

Finally, to access objects saved in the RData file, simply use the load() function
as before.

load("Chapter1.RData")

1.3.7 PACKAGES
One of R’s strengths is the existence of a large community of R users who con-

tribute various functionalities as R packages. These packages are available through
the Comprehensive R Archive Network (CRAN; http://cran.r-project.org).
Throughout the book, we will employ various packages. For the purpose of illustration,
suppose that we wish to load a data file produced by another statistical software package
such as Stata or SPSS. The foreign package is useful when dealing with files from other
statistical software.

http://cran.r-project.org
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To use the package, we must load it into the workspace using the library()
function. In some cases, a package needs to be installed before being loaded. In
RStudio, we can do this by clicking on Packages > Install in the bottom-
right window (see figure 1.1), where all currently installed packages are listed, after
choosing the desired packages to be installed. Alternatively, we can install from the R
console using the install.packages() function (the output is suppressed below).
Package installation needs only to occur once, though we can update the package
later upon the release of a new version (by clicking Update or reinstalling it via the
install.packages() function).

install.packages("foreign") # install package

library("foreign") # load package

Once the package is loaded, we can use the appropriate functions to load the data file.
For example, the read.dta() and read.spss() functions can read Stata and SPSS
data files, respectively (the following syntax assumes the existence of the UNpop.dta
and UNpop.sav files in the working directory).

read.dta("UNpop.dta")

read.spss("UNpop.sav")

As before, it is also possible to save a data frame object as a data file that
can be directly loaded into another statistical software package. For example, the
write.dta() function will save a data frame object as a Stata data file.

write.dta(UNpop, file = "UNpop.dta")

1.3.8 PROGRAMMING AND LEARNING TIPS
We conclude this brief introduction to R by providing several practical tips for

learning how to program in the R language. First, we should use a text editor like the
one that comes with RStudio to write our program rather than directly typing it into
the R console. If we just want to see what a command does, or quickly calculate some
quantity, we can go ahead and enter it directly into the R console. However, for more
involved programming, it is always better to use the text editor and save our code as a
text file with the .R file extension. This way, we can keep a record of our program and
run it again whenever necessary.

In RStudio, use the pull-down menu File > New File > R Script or click
the New File icon (a white square with a green circle enclosing a white plus sign)
and choose R Script. Either approach will open a blank document for text editing in
the upper-left window where we can start writing our code (see figure 1.2). To run our
code from the RStudio text editor, simply highlight the code and press the Run icon.
Alternatively, inWindows, Ctrl+Enter works as a shortcut. The equivalent shortcut for
Mac is Command+Enter. Finally, we can also run the entire code in the background
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Figure 1.2. Screenshot of the RStudio Text Editor. Once we open an R script file in
RStudio, the text editor will appear as one of the windows. It can then be used to write
our code.

(so, the code will not appear in the console) by clicking the Source icon or using the
source() function with the code file name (including a full path if it is not placed in
the working directory) as the input.

source("UNpop.R")

Second, we can annotate our R code so that it can be easily understandable to
ourselves and others. This is especially important as our code gets more complex. To do
this, we use the comment character #, which tells R to ignore everything that follows it.
It is customary to use a double comment character ## if a comment occupies an entire
line and use a single comment character # if a comment is made within a line after an
R command. An example is given here.

##

## File: UNpop.R

## Author: Kosuke Imai

## The code loads the UN population data and saves it as a Stata file

##

library(foreign)

UNpop <- read.csv("UNpop.csv")

UNpop$world.pop <- UNpop$world.pop / 1000 # population in millions

write.dta(UNpop, file = "UNpop.dta")
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Third, for further clarity it is important to follow a certain set of coding rules.
For example, we should use informative names for files, variables, and functions.
Systematic spacing and indentation are essential too. In the above examples, we place
spaces around all binary operators such as <-, =, +, and -, and always add a space
after a comma. While comprehensive coverage of coding style is beyond the scope
of this book, we encourage you to follow a useful R style guide published by Google
at https://google.github.io/styleguide/Rguide.xml. In addition, it is
possible to check our R code for potential errors and incorrect syntax. In computer
science, this process is called linting. The lintr() function in the lintr package
enables the linting of R code. The following syntax implements the linting of the
UNpop.R file shown above, where we replace the assignment operator <- in line 8
with the equality sign = for the sake of illustration.

library(lintr)

lint("UNpop.R")

## UNpop.R:8:7: style: Use <-, not =, for assignment.

## UNpop = read.csv("UNpop.csv")

## ^

Finally, R Markdown via the rmarkdown package is useful for quickly writing
documents using R. R Markdown enables us to easily embed R code and its output
within a document using straightforward syntax in a plain-text format. The resulting
documents can be produced in the form of HTML, PDF, or even Microsoft Word.
Because R Markdown embeds R code as well as its output, the results of data analysis
presented in documents are reproducible. R Markdown is also integrated into RStudio,
making it possible to produce documents with a single click. For a quick start, see
http://rmarkdown.rstudio.com/.

1.4 Summary

This chapter began with a discussion of the important role that quantitative
social science research can play in today’s data-rich society. To make contributions
to this society through data-driven discovery, we must learn how to analyze data,
interpret the results, and communicate our findings to others. To start our journey,
we presented a brief introduction to R, which is a powerful programming language for
data analysis. The remaining pages of this chapter are dedicated to exercises, designed
to ensure that you have mastered the contents of this section. Start with the swirl
review questions that are available via links from http://press.princeton.
edu/qss/. If you answer these questions incorrectly, be sure to go back
to the relevant sections and review the materials before moving on to the
exercises.

https://google.github.io/styleguide/Rguide.xml
http://rmarkdown.rstudio.com/
http://press.princeton.edu/qss/
http://press.princeton.edu/qss/
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Table 1.3. US Election Turnout Data.

Variable Description

year election year
ANES ANES estimated turnout rate
VEP voting eligible population (in thousands)
VAP voting age population (in thousands)
total total ballots cast for highest office (in thousands)
felons total ineligible felons (in thousands)
noncitizens total noncitizens (in thousands)
overseas total eligible overseas voters (in thousands)
osvoters total ballots counted by overseas voters (in thousands)

1.5 Exercises

1.5.1 BIAS IN SELF-REPORTED TURNOUT
Surveys are frequently used to measure political behavior such as voter turnout,

but some researchers are concerned about the accuracy of self-reports. In particular,
they worry about possible social desirability bias where, in postelection surveys,
respondents who did not vote in an election lie about not having voted because they
may feel that they should have voted. Is such a bias present in the American National
Election Studies (ANES)? ANES is a nationwide survey that has been conducted for
every election since 1948. ANES is based on face-to-face interviews with a nationally
representative sample of adults. Table 1.3 displays the names and descriptions of
variables in the turnout.csv data file.

1. Load the data into R and check the dimensions of the data. Also, obtain a
summary of the data. How many observations are there? What is the range of
years covered in this data set?

2. Calculate the turnout rate based on the voting age population or VAP. Note that
for this data set, we must add the total number of eligible overseas voters since
the VAP variable does not include these individuals in the count. Next, calculate
the turnout rate using the voting eligible population or VEP. What difference do
you observe?

3. Compute the differences between the VAP and ANES estimates of turnout rate.
How big is the difference on average? What is the range of the differences?
Conduct the same comparison for the VEP and ANES estimates of voter turnout.
Briefly comment on the results.

4. Compare the VEP turnout rate with the ANES turnout rate separately for
presidential elections and midterm elections. Note that the data set excludes the
year 2006. Does the bias of the ANES estimates vary across election types?
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Table 1.4. Fertility and Mortality Estimate Data.

Variable Description
country abbreviated country name
period period during which data are collected
age age group
births number of births (in thousands), i.e., the number of

children born to women of the age group
deaths number of deaths (in thousands)
py.men person-years for men (in thousands)
py.women person-years for women (in thousands)

Source: United Nations, Department of Economic and Social Affairs, Population
Division (2013).World Population Prospects: The 2012 Revision, DVD Edition.

5. Divide the data into half by election years such that you subset the data into two
periods. Calculate the difference between the VEP turnout rate and the ANES
turnout rate separately for each year within each period. Has the bias of ANES
increased over time?

6. ANES does not interview prisoners and overseas voters. Calculate an adjustment
to the 2008 VAP turnout rate. Begin by subtracting the total number of ineligible
felons and noncitizens from the VAP to calculate an adjusted VAP. Next,
calculate an adjusted VAP turnout rate, taking care to subtract the number of
overseas ballots counted from the total ballots in 2008. Compare the adjusted
VAP turnout with the unadjusted VAP, VEP, and the ANES turnout rate. Briefly
discuss the results.

1.5.2 UNDERSTANDING WORLD POPULATION DYNAMICS
Understanding population dynamics is important for many areas of social science.

We will calculate some basic demographic quantities of births and deaths for the
world’s population from two time periods: 1950 to 1955 and 2005 to 2010. We will
analyze the following CSV data files: Kenya.csv, Sweden.csv, and World.csv.
The files contain population data for Kenya, Sweden, and the world, respectively.
Table 1.4 presents the names and descriptions of the variables in each data set. The
data are collected for a period of 5 years where person-year is a measure of the time
contribution of each person during the period. For example, a personwho lives through
the entire 5-year period contributes 5 person-years, whereas someone who lives only
through the first half of the period contributes 2.5 person-years. Before you begin this
exercise, it would be a good idea to directly inspect each data set. In R, this can be
done with the View() function, which takes as its argument the name of the data
frame to be examined. Alternatively, in RStudio, double-clicking a data frame in the
Environment tab will enable you to view the data in a spreadsheet-like form.
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1. We begin by computing crude birth rate (CBR) for a given period. The CBR is
defined as

CBR = number of births

number of person-years lived
.

Compute the CBR for each period, separately for Kenya, Sweden, and the world.
Start by computing the total person-years, recorded as a new variable within each
existing data frame via the $ operator, by summing the person-years for men and
women. Then, store the results as a vector of length 2 (CBRs for two periods) for
each region with appropriate labels. You may wish to create your own function
for the purpose of efficient programming. Briefly describe patterns you observe
in the resulting CBRs.

2. The CBR is easy to understand but contains both men and women of all ages in
the denominator. We next calculate the total fertility rate (TFR). Unlike the CBR,
the TFR adjusts for age compositions in the female population. To do this, we
need to first calculate the age-specific fertility rate (ASFR), which represents the
fertility rate for women of the reproductive age range [15, 50). The ASFR for the
age range [x, x+δ), where x is the starting age and δ is the width of the age range
(measured in years), is defined as

ASFR[x, x+δ) = number of births to women of age [x, x + δ)
number of person-years lived by women of age [x, x + δ)

.

Note that square brackets, [ and ], include the limit whereas parentheses, ( and ),
exclude it. For example, [20, 25) represents the age range that is greater than or
equal to 20 years old and less than 25 years old. In typical demographic data, the
age range δ is set to 5 years. Compute the ASFR for Sweden and Kenya as well as
the entire world for each of the two periods. Store the resulting ASFRs separately
for each region. What does the pattern of these ASFRs say about reproduction
among women in Sweden and Kenya?

3. Using the ASFR, we can define the TFR as the average number of children that
women give birth to if they live through their entire reproductive age:

TFR = ASFR[15, 20) × 5 + ASFR[20, 25) × 5 + · · · + ASFR[45, 50) × 5.

We multiply each age-specific fertility rate by 5 because the age range is 5 years.
Compute the TFR for Sweden and Kenya as well as the entire world for each
of the two periods. As in the previous question, continue to assume that the
reproductive age range of women is [15, 50). Store the resulting two TFRs for
each country or the world as vectors of length 2. In general, how has the number
of women changed in the world from 1950 to 2000?What about the total number
of births in the world?

4. Next, we will examine another important demographic process: death. Compute
the crude death rate (CDR), which is a concept analogous to the CBR, for each
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period and separately for each region. Store the resulting CDRs for each country
and the world as vectors of length 2. The CDR is defined as

CDR = number of deaths

number of person-years lived
.

Briefly describe the patterns you observe in the resulting CDRs.

5. One puzzling finding from the previous question is that the CDR for Kenya
during the period 2005–2010 is about the same level as that for Sweden. We
would expect people in developed countries like Sweden to have a lower death
rate than those in developing countries like Kenya. While it is simple and easy
to understand, the CDR does not take into account the age composition of a
population. We therefore compute the age-specific death rate (ASDR). The ASDR
for age range [x, x + δ) is defined as

ASDR[x, x+δ) = number of deaths for people of age [x, x + δ)
number of person-years of people of age [x, x + δ)

.

Calculate the ASDR for each age group, separately for Kenya and Sweden, during
the period 2005–2010. Briefly describe the pattern you observe.

6. One way to understand the difference in the CDR between Kenya and Sweden
is to compute the counterfactual CDR for Kenya using Sweden’s population
distribution (or vice versa). This can be done by applying the following alternative
formula for the CDR:

CDR = ASDR[0,5) × P[0,5) + ASDR[5,10) × P[5,10) + · · · ,

where P[x,x+δ) is the proportion of the population in the age range [x, x + δ).
We compute this as the ratio of person-years in that age range relative to the total
person-years across all age ranges. To conduct this counterfactual analysis, we use
ASDR[x,x+δ) from Kenya and P[x,x+δ) from Sweden during the period 2005–2010.
That is, first calculate the age-specific population proportions for Sweden and
then use them to compute the counterfactual CDR for Kenya. How does this
counterfactual CDR compare with the original CDR of Kenya? Briefly interpret
the result.
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Causality

Shallow men believe in luck, believe in circumstances.
Strong men believe in cause and effect.
— Ralph Waldo Emerson, The Conduct of Life

In this chapter, we consider causality, one of the most central concepts of quantitative
social science. Much of social science research is concerned with the causal effects
of various policies and other societal factors. Do small class sizes raise students’
standardized test scores? Would universal health care improve the health and finances
of the poor? What makes voters turn out in elections and determines their choice of
candidates? To answer these causal questions, one must infer a counterfactual outcome
and compare it with what actually happens (i.e., a factual outcome). We show how
careful research design and data analysis can shed light on these causal questions
that shape important academic and policy debates. We begin with a study of racial
discrimination in the labor market. We then introduce various research designs useful
for causal inference and apply them to additional studies concerning social pressure
and voter turnout, as well as the impact of minimum-wage increases on employment.
We also learn how to subset data in different ways and compute basic descriptive
statistics in R.

2.1 Racial Discrimination in the Labor Market

Does racial discrimination exist in the labor market? Or, should racial disparities
in the unemployment rate be attributed to other factors such as racial gaps in
educational attainment? To answer this question, two social scientists conducted
the following experiment.1 In response to newspaper ads, the researchers sent out
résumés of fictitious job candidates to potential employers. They varied only the names
of job applicants, while leaving the other information in the résumés unchanged.

1 This section is based on Marianne Bertrand and Sendhil Mullainathan (2004) “Are Emily and Greg more
employable than Lakisha and Jamal? A field experiment on labor market discrimination.” American Economic
Review, vol. 94, no. 4, pp. 991–1013.
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Table 2.1. Résumé Experiment Data.

Variable Description
firstname first name of the fictitious job applicant
sex sex of applicant (female or male)
race race of applicant (black or white)
call whether a callback was made (1= yes, 0= no)

For some candidates, stereotypically African-American-sounding names such as
Lakisha Washington or Jamal Jones were used, whereas other résumés contained
stereotypically white-sounding names, such as Emily Walsh or Greg Baker. The
researchers then compared the callback rates between these two groups and examined
whether applicants with stereotypically black names received fewer callbacks than
those with stereotypically white names. The positions to which the applications were
sent were either in sales, administrative support, clerical, or customer services.

Let’s examine the data from this experiment in detail. We begin by loading the CSV
data file, resume.csv, into R as a data frame object called resume using the function
read.csv(). Table 2.1 presents the names and descriptions of the variables in this
data set.

resume <- read.csv("resume.csv")

Instead of using read.csv(), you can also import the data set using the pull-down
menu Tools > Import Dataset > From Text File... in RStudio.

This data frame object resume is an example of experimental data. Experimental
data are collected from an experimental research design, in which a treatment variable,
or a causal variable of interest, is manipulated in order to examine its causal effects on
an outcome variable. In this application, the treatment refers to the race of a fictitious
applicant, implied by the name given on the résumé. The outcome variable is whether
the applicant receives a callback. We are interested in examining whether or not the
résumés with different names yield varying callback rates.

Experimental research examines how a treatment causally affects an outcome by
assigning varying values of the treatment variable to different observations, and
measuring their corresponding values of the outcome variable.

dim(resume)

## [1] 4870 4

Using the dim() function, we can see that resume consists of 4870 observations
and 4 variables. Each observation represents a fictitious job applicant. The outcome
variable is whether the fictitious applicant received a callback from a prospective
employer. The treatment variable is the race and gender of each applicant, though
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more precisely the researchers were manipulating how potential employers perceive
the gender and race of applicants, rather than directly manipulating those attributes.

Once imported, the data set is displayed in a spreadsheet-like format in an RStudio
window. Alternatively, we can look at the first several observations of the data set using
the head() function.

head(resume)

## firstname sex race call

## 1 Allison female white 0

## 2 Kristen female white 0

## 3 Lakisha female black 0

## 4 Latonya female black 0

## 5 Carrie female white 0

## 6 Jay male white 0

For example, the second observation contains a résumé for Kristen, identified as a
white female who did not receive a callback. In addition, we can also create a summary
of the data frame via the summary() function.

summary(resume)

## firstname sex race

## Tamika : 256 female:3746 black:2435

## Anne : 242 male :1124 white:2435

## Allison: 232

## Latonya: 230

## Emily : 227

## Latoya : 226

## (Other):3457

## call

## Min. :0.00000

## 1st Qu.:0.00000

## Median :0.00000

## Mean :0.08049

## 3rd Qu.:0.00000

## Max. :1.00000

##

The summary indicates the number of résumés for each name, gender, and race as
well as the overall proportion of résumés that received a callback. For example, there
were 230 résumés whose applicants had the first name of “Latonya.” The summary also
shows that the data set contains the same number of black and white names, while there
are more female than male résumés.

We can now begin to answer whether or not the résumés with African-American-
sounding names are less likely to receive callbacks. To do this, we first create a
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contingency table (also called a cross tabulation) summarizing the relationship between
the race of each fictitious job applicant and whether a callback was received. A two-way
contingency table contains the number of observations that fall within each category,
defined by its corresponding row (race variable) and column (call variable). Recall
that a variable in a data frame can be accessed using the $ operator (see section 1.3.5).
For example, the syntax resume$race will extract the race variable in the resume
data frame.

race.call.tab <- table(race = resume$race, call = resume$call)

race.call.tab

## call

## race 0 1

## black 2278 157

## white 2200 235

The table shows, for example, that among 2435 (= 2278 + 157) résumés with
stereotypically black names, only 157 received a callback. It is convenient to add totals
for each row and column by applying the addmargins() function to the output of
the table() function.

addmargins(race.call.tab)

## call

## race 0 1 Sum

## black 2278 157 2435

## white 2200 235 2435

## Sum 4478 392 4870

Using this table, we can compute the callback rate, or the proportion of those who
received a callback, for the entire sample and then separately for black and white
applicants.

## overall callback rate: total callbacks divided by the sample size

sum(race.call.tab[, 2]) / nrow(resume)

## [1] 0.08049281

## callback rates for each race

race.call.tab[1, 2] / sum(race.call.tab[1, ]) # black

## [1] 0.06447639

race.call.tab[2, 2] / sum(race.call.tab[2, ]) # white

## [1] 0.09650924
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Recall that the syntax race.call.tab[1, ], which does not specify the column
number, extracts all the elements of the first row of this matrix. Note that in the square
brackets, the number before the comma identifies the row of the matrix whereas the
number after the comma identifies the column (see section 1.3.5). This can be seen by
simply typing the syntax into R.

race.call.tab[1, ] # the first row

## 0 1

## 2278 157

race.call.tab[, 2] # the second column

## black white

## 157 235

From this analysis, we observe that the callback rate for the résumés with African-
American-sounding names is 0.032, or 3.2 percentage points, lower than those with
white-sounding names. While we do not know whether this is the result of intentional
discrimination, the lower callback rate for black applicants suggests the existence of
racial discrimination in the labor market. Specifically, our analysis shows that the same
résumé with a black-sounding name is substantially less likely to receive a callback than
an identical résumé with a white-sounding name.

An easier way to compute callback rates is to exploit the fact that call is a binary
variable, or dummy variable, that takes the value 1 if a potential employer makes a
callback and 0 otherwise. In general, the sample mean of a binary variable equals
the sample proportion of 1s. This means that the callback rate can be conveniently
calculated as the sample mean, or sample average, of this variable using the mean()
function rather than dividing the counts of 1s by the total number of observations.
For example, instead of the slightly more complex syntax we used above, the overall
callback rate can be calculated as follows.

mean(resume$call)

## [1] 0.08049281

What about the callback rate for each race? To compute this using the mean()
function, we need to first subset the data for each race and then compute the mean of
the call variable within this subset. The next section shows how to subset data in R.

2.2 Subsetting the Data in R

In this section, we learn how to subset a data set in various ways. We first introduce
logical values and operators, which enable us to specify which observations and
variables of a data set should be extracted. We also learn about factor variables, which
represent categorical variables in R.
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2.2.1 LOGICAL VALUES AND OPERATORS
To understand subsetting, we first note that R has a special representation of the

two logical values, TRUE and FALSE, which belong to the object class logical (see
section 1.3.2).

class(TRUE)

## [1] "logical"

These logical values can be converted to a binary variable in the integer class using
the function as.integer(), where TRUE is recoded as 1 and FALSE becomes 0.

as.integer(TRUE)

## [1] 1

as.integer(FALSE)

## [1] 0

In many cases, R will coerce logical values into a binary variable so that performing
numerical operations is straightforward. For example, in order to compute the propor-
tion of TRUEs in a vector, one can simply use the mean() function to compute the
sample mean of a logical vector. Similarly, we can use the sum() function to sum the
elements of this vector in order to compute the total number of TRUEs.

x <- c(TRUE, FALSE, TRUE) # a vector with logical values

mean(x) # proportion of TRUEs

## [1] 0.6666667

sum(x) # number of TRUEs

## [1] 2

The logical values are often produced with the logical operators & and | corre-
sponding to logical conjunction (“AND”) and logical disjunction (“OR”), respectively.
The value of “AND” (&) is TRUE only when both of the objects have a value of
TRUE.

FALSE & TRUE

## [1] FALSE

TRUE & TRUE

## [1] TRUE
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Table 2.2. Logical Conjunction “AND’’ and Disjunction “OR’’.

Statement a Statement b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE

The table shows the value of a AND b and that of a OR b when statements
a and b are either TRUE or FALSE.

“OR” (|) is used in a similar way. However, unlike “AND”, “OR” is true when at
least one of the objects has the value TRUE.

TRUE | FALSE

## [1] TRUE

FALSE | FALSE

## [1] FALSE

We summarize these relationships in table 2.2. For example, if one statement is
FALSE and the other is TRUE, then the logical conjunction of the two statements
is FALSE but their logical disjunction is TRUE (the second and third rows of the
table).

With the same principle in mind, we can also chain multiple comparisons together
where all elements must be TRUE in order for the syntax to return TRUE.

TRUE & FALSE & TRUE

## [1] FALSE

Furthermore, “AND” and “OR” can be used simultaneously, but parentheses should
be used to avoid confusion.

(TRUE | FALSE) & FALSE # the parentheses evaluate to TRUE

## [1] FALSE

TRUE | (FALSE & FALSE) # the parentheses evaluate to FALSE

## [1] TRUE

We can perform the logical operations “AND” and “OR” on the entire vector all
at once. In the following syntax example, each element of the TF1 logical vector is
compared against the corresponding element of the logical TF2 vector.
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TF1 <- c(TRUE, FALSE, FALSE)

TF2 <- c(TRUE, FALSE, TRUE)

TF1 | TF2

## [1] TRUE FALSE TRUE

TF1 & TF2

## [1] TRUE FALSE FALSE

2.2.2 RELATIONAL OPERATORS
Relational operators evaluate the relationships between two values. They include

“greater than” (>), “greater than or equal to” (>=), “less than” (<), “less than or equal
to” (<=), “equal to” (==, which is different from =), and “not equal to” (!=). These
operators return logical values.

4 > 3

## [1] TRUE

"Hello" == "hello" # R is case sensitive

## [1] FALSE

"Hello" != "hello"

## [1] TRUE

Like the logical operators, the relational operators may be applied to vectors all at
once. When applied to a vector, the operators evaluate each element of the vector.

x <- c(3, 2, 1, -2, -1)

x >= 2

## [1] TRUE TRUE FALSE FALSE FALSE

x != 1

## [1] TRUE TRUE FALSE TRUE TRUE

Since the relational operators produce logical values, we can combine their outputs
with “AND” (&) and “OR” (|). When there are multiple instances of evaluation, it is
good practice to put each evaluation within parentheses for ease of interpretation.

## logical conjunction of two vectors with logical values

(x > 0) & (x <= 2)

## [1] FALSE TRUE TRUE FALSE FALSE
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## logical disjunction of two vectors with logical values

(x > 2) | (x <= -1)

## [1] TRUE FALSE FALSE TRUE TRUE

As we saw earlier, the logical values, TRUE and FALSE, can be coerced into integers
(1 and 0 representing TRUE and FALSE, respectively). We can therefore compute the
number and proportion of TRUE elements in a vector very easily.

x.int <- (x > 0) & (x <= 2) # logical vector

x.int

## [1] FALSE TRUE TRUE FALSE FALSE

mean(x.int) # proportion of TRUEs

## [1] 0.4

sum(x.int) # number of TRUEs

## [1] 2

2.2.3 SUBSETTING
In sections 1.3.3 and 1.3.5, we learned how to subset vectors and data frames using

indexing. Here, we show how to subset them using logical values, introduced above.
At the end of section 2.1, we saw how to calculate the callback rate for the entire
sample by applying the mean() function to the binary call variable. To compute
the callback rate among the résumés with black-sounding names, we use the following
syntax.

## callback rate for black-sounding names

mean(resume$call[resume$race == "black"])

## [1] 0.06447639

This command syntax subsets the call variable in the resume data frame for
the observations whose values for the race variable are equal to black. That is, we
can utilize square brackets [ ] to index the values in a vector by placing the logical
value of each element into a vector of the same length within the square brackets. The
elements whose indexing value is TRUE are extracted. The syntax then calculates the
sample mean of this subsetted vector using the mean() function, which is equal to
the proportion of subsetted observations whose values for the call variable are equal
to 1. It is instructive to print out the logical vector used inside the square brackets for
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subsetting.We observe that if the value of the race variable equals black (white) for
an observation then its corresponding element of the resulting logical vector is TRUE
(FALSE).

## race of first 5 observations

resume$race[1:5]

## [1] white white black black white

## Levels: black white

## comparison of first 5 observations

(resume$race == "black")[1:5]

## [1] FALSE FALSE TRUE TRUE FALSE

Note that Levels in the above output represent the values of a factor or categorical
variable, which will later be explained in detail (see section 2.2.5). The calculation of
callback rate for black-sounding names can also be done in two steps. We first subset a
data frame object so that it contains only the résumés with black-sounding names and
then compute the callback rate.

dim(resume) # dimension of original data frame

## [1] 4870 4

## subset blacks only

resumeB <- resume[resume$race == "black", ]

dim(resumeB) # this data.frame has fewer rows than the original data.frame

## [1] 2435 4

mean(resumeB$call) # callback rate for blacks

## [1] 0.06447639

Here, the data frame resumeB contains only the information about the résumés
with black-sounding names. Notice that we used square brackets [,] to index the rows
of this original data frame. Unlike in the case of indexing vectors, we use a comma to
separate row and column indexes. This comma is important and forgetting to include
it will lead to an error.

Instead of indexing through the square brackets, we can alternatively use the
subset() function to construct a data frame that contains just some of the original
observations and just some of the original variables. The function’s two primary
arguments, other than the original data frame object, are the subset and select
arguments. The subset argument takes a logical vector that indicates whether each
individual row should be kept for the new data frame. The select argument takes
a character vector that specifies the names of variables to be retained. For example,
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the following syntax will extract the call and firstname variables for the résumés
which contain female black-sounding names.

## keep "call" and "firstname" variables

## also keep observations with female black-sounding names

resumeBf <- subset(resume, select = c("call", "firstname"),

subset = (race == "black" & sex == "female"))

head(resumeBf)

## call firstname

## 3 0 Lakisha

## 4 0 Latonya

## 8 0 Kenya

## 9 0 Latonya

## 11 0 Aisha

## 13 0 Aisha

When using the subset() function, we can eliminate the subset argu-
ment label. For example, subset(resume, subset = (race == "black"
& sex == "female")) shortens to subset(resume, race == "black" &
sex == "female"). Note that one could specify the data frame name to which
the race and sex variables belong, i.e., subset(resume, (resume$race ==
"black" & resume$sex == "female")), but this is unnecessary. By default,
the variable names in this argument are assumed to come from the data frame
specified in the first argument (resume in this case). So we can use simpler syntax:
subset(resume, (race == "black" & sex == "female")). It is impor-
tant to pay close attention to parentheses so that each logical statement is contained
within a pair of parentheses.

An identical subsetting result can be obtained using [,] rather than the subset()
function, where the first element of the square brackets specifies the rows to be retained
(using a logical vector) and the second element specifies the columns to be kept (using
a character or integer vector).

## alternative syntax with the same results

resumeBf <- resume[resume$race == "black" & resume$sex == "female",

c("call", "firstname")]

We can now separately compute the racial gap in callback rate among female and
male job applicants. Notice that we do not include a select argument to specify which
variables to keep. Consequently, all variables will be retained.

## black male

resumeBm <- subset(resume, subset = (race == "black") & (sex == "male"))



2.2 Subsetting the Data in R 43

## white female

resumeWf <- subset(resume, subset = (race == "white") & (sex == "female"))

## white male

resumeWm <- subset(resume, subset = (race == "white") & (sex == "male"))

## racial gaps

mean(resumeWf$call) - mean(resumeBf$call) # among females

## [1] 0.03264689

mean(resumeWm$call) - mean(resumeBm$call) # among males

## [1] 0.03040786

It appears that the racial gap exists but does not vary across gender groups. For both
female and male job applicants, the callback rate is higher for whites than blacks by
roughly 3 percentage points.

2.2.4 SIMPLE CONDITIONAL STATEMENTS
In many situations, we would like to perform different actions depending on

whether a statement is true or false. These “actions” can be as complex or as simple
as you need them to be. For example, we may wish to create a new variable based
on the values of other variables in a data set. In chapter 4, we will learn more about
conditional statements, but here we cover simple conditional statements that involve
the ifelse() function.

The function ifelse(X, Y, Z) contains three elements. For each element in X
that is TRUE, the corresponding element in Y is returned. In contrast, for each element
in X that is FALSE, the corresponding element in Z is returned. For example, suppose
that we want to create a new binary variable called BlackFemale in the resume
data frame that equals 1 if the job applicant’s name sounds black and female, and 0
otherwise. The following syntax achieves this goal.

resume$BlackFemale <- ifelse(resume$race == "black" &

resume$sex == "female", 1, 0)

We then use a three-way contingency table obtained by the table() function to
confirm the result. As expected, the BlackFemale variable equals 1 only when a
résumé belongs to a female African-American.

table(race = resume$race, sex = resume$sex,

BlackFemale = resume$BlackFemale)

## , , BlackFemale = 0

##

## sex

## race female male

## black 0 549

## white 1860 575
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##

## , , BlackFemale = 1

##

## sex

## race female male

## black 1886 0

## white 0 0

In the above output, the , , BlackFemale = 0 and , , BlackFemale = 1
headers indicate that the first two dimensions of the three-dimensional table are shown
with the third variable, BlackFemale, equal to 0 and 1 for the first and second tables,
respectively.

2.2.5 FACTOR VARIABLES
Next we show how to create a factor variable (or factorial variable) in R. A factor

variable is another name for a categorical variable that takes a finite number of distinct
values or levels. Here, we wish to create a factor variable that takes one of the four
values, i.e., BlackFemale, BlackMale, WhiteFemale, and WhiteMale. To do
this, we first create a new variable, type, which is filled with missing values NA. We
then specify each type using the characteristics of the applicants.

resume$type <- NA

resume$type[resume$race == "black" & resume$sex == "female"] <- "BlackFemale"

resume$type[resume$race == "black" & resume$sex == "male"] <- "BlackMale"

resume$type[resume$race == "white" & resume$sex == "female"] <- "WhiteFemale"

resume$type[resume$race == "white" & resume$sex == "male"] <- "WhiteMale"

It turns out that this new variable is a character vector, and so we use the
as.factor() function to turn this vector into a factor variable. While a factor
variable looks like a character variable, the former actually has numeric values called
levels, each of which has a character label. By default, the levels are sorted into
alphabetical order based on their character labels. The levels of a factor variable can
be obtained using the levels() function. Moreover, the table() function can be
applied to obtain the number of observations that fall into each level.

## check object class

class(resume$type)

## [1] "character"

## coerce new character variable into a factor variable

resume$type <- as.factor(resume$type)

## list all levels of a factor variable

levels(resume$type)

## [1] "BlackFemale" "BlackMale" "WhiteFemale" "WhiteMale"
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## obtain the number of observations for each level

table(resume$type)

##

## BlackFemale BlackMale WhiteFemale WhiteMale

## 1886 549 1860 575

The main advantage of factor objects is that R has a number of useful functionalities
for them. One such example is the tapply() function, which applies a function
repeatedly within each level of the factor variable. Suppose, for example, we want to
calculate the callback rate for each of the four categories we just created. If we use the
tapply() function this can be done in one line, rather than computing them one by
one. Specifically, we use the function as in tapply(X, INDEX, FUN), which applies
the function indicated by argument FUN to the object X for each of the groups defined
by unique values of the vector INDEX. Here, we apply the mean() function to the
call variable separately for each category of the type variable using the resume
data frame.

tapply(resume$call, resume$type, mean)

## BlackFemale BlackMale WhiteFemale WhiteMale

## 0.06627784 0.05828780 0.09892473 0.08869565

Recall that the order of arguments in a function matters unless the name of the
argument is explicitly specified. The result indicates that black males have the lowest
callback rate followed by black females, white males, and white females.We can even go
one step further and compute the callback rate for each first name. Using the sort()
function, we can sort the result into increasing order for ease of presentation.

## turn first name into a factor variable

resume$firstname <- as.factor(resume$firstname)

## compute callback rate for each first name

callback.name <- tapply(resume$call, resume$firstname, mean)

## sort the result into increasing order

sort(callback.name)

## Aisha Rasheed Keisha Tremayne Kareem

## 0.02222222 0.02985075 0.03825137 0.04347826 0.04687500

## Darnell Tyrone Hakim Tamika Lakisha

## 0.04761905 0.05333333 0.05454545 0.05468750 0.05500000

## Tanisha Todd Jamal Neil Brett

## 0.05797101 0.05882353 0.06557377 0.06578947 0.06779661

## Geoffrey Brendan Greg Emily Anne

## 0.06779661 0.07692308 0.07843137 0.07929515 0.08264463
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## Jill Latoya Kenya Matthew Latonya

## 0.08374384 0.08407080 0.08673469 0.08955224 0.09130435

## Leroy Allison Ebony Jermaine Laurie

## 0.09375000 0.09482759 0.09615385 0.09615385 0.09743590

## Sarah Meredith Carrie Kristen Jay

## 0.09844560 0.10160428 0.13095238 0.13145540 0.13432836

## Brad

## 0.15873016

As expected from the above aggregate result, we find that many typical names for
black males and females have low callback rates.

2.3 Causal Effects and the Counterfactual

In the résumé experiment, we are trying to quantify the causal effects of applicants’
names on their likelihood of receiving a callback from a potential employer. What do
we exactly mean by causal effects? How should we think about causality in general? In
this section, we discuss a commonly used framework for causal inference in quantitative
social science research.

The key to understanding causality is to think about the counterfactual. Causal
inference is a comparison between the factual (i.e., what actually happened) and the
counterfactual (i.e., what would have happened if a key condition were different). The
very first observation of the résumé experiment data shows that a potential employer
received a résumé with a stereotypically white female first name Allison but decided
not to call back (the value of the call variable is 0 for this observation).

resume[1, ]

## firstname sex race call BlackFemale type

## 1 Allison female white 0 0 WhiteFemale

The key causal question here is whether the same employer would have called back
if the applicant’s name were instead a stereotypically African-American name such
as Lakisha. Unfortunately, we would never observe this counterfactual outcome,
because the researchers who conducted this experiment did not send out the same
résumé to the same employer using Lakisha as the first name (perhaps out of fear
that sending two identical résumés with different names would raise suspicion among
potential employers).

Consider another example where researchers are interested in figuring out whether
raising the minimum wage increases the unemployment rate. Some argue that increas-
ing the minimum wage may not be helpful for the poor, because employers would hire
fewer workers if they have to pay higher wages (or hire higher-skilled instead of low-
skilled workers). Suppose that one state in a country decided to raise the minimum
wage and in this state the unemployment rate increased afterwards. This does not
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Table 2.3. Potential Outcome Framework of Causal Inference.

Résumé Black-sounding Callback
Age Education

i name Ti Yi (1) Yi (0)
1 1 1 ? 20 college
2 0 ? 0 55 high school
3 0 ? 1 40 graduate school
...

...
...

...
...

...
n 1 0 ? 62 college

Note: The table illustrates the potential outcome framework of causal inference using the example of the
résumé experiment. For each résumé of fictitious job applicant i , either the black-sounding, Ti = 1, or white-
sounding, Ti = 0, name is used. The résumé contains other characteristics such as age and education, which
are neither subject to nor affected by the manipulation. For a résumé with a black-sounding name, we can
observe whether or not it receives a callback from the potential employer who received it, Yi (1), but will not
be able to know the callback outcome if a white-sounding name was used, Yi (0). For every résumé, only one
of the two potential outcomes is observed and the other is missing (indicated by “?”).

necessarily imply that a higherminimumwage led to the increase in the unemployment
rate. In order to know the causal effect of increasing the minimum wage, we would
need to observe the unemployment rate that would have resulted if this state had not
raised the minimum wage. Clearly, we would never be able to directly survey this
counterfactual unemployment rate. Another example concerns the question of whether
a job training program increases one’s prospect of employment. Even if someone who
actually had received job training secured a job afterwards, it does not necessarily
follow that it was the job training program which led to the employment. The person
may have become employed even in the absence of such a training program.

These examples illustrate the fundamental problem of causal inference, which arises
because we cannot observe the counterfactual outcomes. We refer to a key causal
variable of interest as a treatment variable, even though the variable may have nothing
to do with a medical treatment. To determine whether a treatment variable of interest
T , causes a change in an outcome variable Y , we must consider two potential outcomes,
i.e., the potential values of Y that would be realized in the presence and absence of
the treatment, denoted by Y(1) and Y(0), respectively. In the résumé experiment, T
may represent the race of a fictitious applicant (T = 1 is a black-sounding name and
T = 0 is a white-sounding name) while Y denotes whether a potential employer who
received the résumé called back. Then, Y(1) and Y(0) represent whether a potential
employer calls back when receiving a résumé with stereotypically black and white
names, respectively.

All of these variables can be defined for each observation and marked by a
corresponding subscript. For example, Yi (1) represents the potential outcome under
the treatment condition for the i th observation, and Ti is the treatment variable for
the same observation. Table 2.3 illustrates the potential outcome framework in the
context of the résumé experiment. Each row represents an observation for which
only one of the two potential outcomes is observed (the missing potential outcome
is indicated by “?”). The treatment status Ti determines which potential outcome is
observed. Variables such as age and education are neither subject to nor affected by the
manipulation of treatment.
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We can now define, for each observation, the causal effect of Ti on Yi as the
difference between these two potential outcomes, Yi (1) − Yi (0). The race of the
applicant has a causal effect if a potential employer’s decision to callback depends on it.
As stated earlier, the fundamental problem of causal inference is that we are only able
to observe one of the two potential outcomes even though causal inference requires
comparison of both. An important implication is that for estimation of causal effects,
we must find a credible way to infer these unobserved counterfactual outcomes. This
requires making certain assumptions. The credibility of any causal inference, therefore,
rests upon the plausibility of these identification assumptions.

For each observation i , we can define the causal effect of a binary treatment
Ti as the difference between two potential outcomes, Yi (1) − Yi (0), where Yi (1)
represents the outcome that would be realized under the treatment condition
(Ti = 1) and Yi (0) denotes the outcome that would be realized under the control
condition (Ti = 0).

The fundamental problem of causal inference is that we observe only one of the
two potential outcomes, and which potential outcome is observed depends on the
treatment status. Formally, the observed outcome Yi is equal to Yi (Ti ).

This simple framework of causal inference also clarifies what is and is not an
appropriate causal question. For example, consider a question of whether one’s race
causally affects one’s employment prospects. In order to answer this question directly,
it would be necessary to consider the counterfactual employment status if the applicant
were to belong to a different racial group. However, this is a difficult proposition to
address because one’s race is not something that can be manipulated. Characteristics
like gender and race are called immutable characteristics, and many scholars believe
that causal questions about these characteristics are not answerable. In fact, there exists
a mantra which states, “No causation without manipulation.” It may be difficult to
think about causality if the treatment variable of interest cannot be easily manipulated.

The résumé experiment, however, provides a clever way of addressing an important
social science question about racial discrimination. Instead of tackling the difficult
task of directly estimating the causal effect of race, the researchers of this study
manipulated potential employers’ perception of job applicants’ race by changing the
names on identical résumés. This research design strategy enables one to study racial
discrimination in the causal inference framework by circumventing the difficulty
of manipulating one’s race itself. Many social scientists use similar research design
strategies to study discrimination due to factors such as race, gender, and religion in
various environments.

2.4 Randomized Controlled Trials

Now that we have provided the general definition of causal effects, how should we
go about estimating them? We first consider randomized experiments, also referred
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to as randomized controlled trials (RCTs), in which researchers randomly assign the
receipt of treatment. An RCT is often regarded as the gold standard for establishing
causality in many scientific disciplines because it enables researchers to isolate the
effects of a treatment variable and quantify uncertainty. In this section, we discuss how
randomization identifies the average causal effects. A discussion of how to quantify
uncertainty will be given in chapter 7.

2.4.1 THE ROLE OF RANDOMIZATION
As explained in the previous section, the fundamental problem of causal inference

states that for the estimation of causal effects, we must infer counterfactual outcomes.
This problem prevents us from obtaining a valid estimate of the causal effect of treat-
ment for each individual. However, it turns out that the randomization of treatment
assignment enables the estimation of average treatment effect, which averages the
treatment effect over a group of individuals.

Suppose that we are interested in estimating the sample average treatment effect
(SATE), which is defined as the average of individual-level treatment effects in the
sample.

The sample average treatment effect (SATE) is defined as the sample average of
individual-level causal effects (i.e., Yi (1) − Yi (0)):

SATE = 1
n

n∑

i=1

{Yi (1) − Yi (0)}, (2.1)

where n is the sample size, and
∑n

i=1 denotes the summation operator from the
first observation, i = 1, to the last, i = n.

The SATE is not directly observable. For the treatment group that received the
treatment, we observe the average outcome under the treatment but do not know what
their average outcome would have been in the absence of the treatment. The same
problem exists for the control group because this group does not receive the treatment
and as a result we do not observe the average outcome that would occur under the
treatment condition.

In order to estimate the average counterfactual outcome for the treatment group,
we may use the observed average outcome of the control group. Similarly, we can use
the observed average outcome of the treatment group as an estimate of the average
counterfactual outcome for the control group. This suggests that the SATE can be
estimated by calculating the difference in the average outcome between the treatment
and control groups or the difference-in-means estimator. The critical question is
whether we can interpret this difference as a valid estimate of the average causal effect.
In the résumé experiment, the treatment group consists of the potential employers
who were sent résumés with black-sounding names. In contrast, the control group
comprises other potential employers who received the résumés with stereotypically
white names. Does the difference in callback rate between these two groups represent
the average causal effect of the applicant’s race?
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Randomization of treatment assignment plays an essential role in enabling the
interpretation of this association as a causal relationship. By randomly assigning each
subject to either the treatment or control group, we ensure that these two groups are
similar to each other in every aspect. In fact, even though they consist of different
individuals, the treatment and control groups are on average identical to each other
in terms of all pretreatment characteristics, both observed and unobserved. Since the
only systematic difference between the two groups is the receipt of treatment, we can
interpret the difference in the outcome variable as the estimated average causal effect
of the treatment. In this way, the randomization of treatment assignment separates the
causal effect of treatment from other possible factors that may influence the outcome.
As we will see in section 2.5, we cannot guarantee that the treatment and control
groups are comparable across all unobserved characteristics in the absence of random
assignment.

In a randomized controlled trial (RCT), each unit is randomly assigned either
to the treatment or control group. The randomization of treatment assignment
guarantees that the average difference in outcome between the treatment and
control groups can be attributed solely to the treatment, because the two groups
are on average identical to each other in all pretreatment characteristics.

RCTs, when successfully implemented, can yield valid estimates of causal effects.
For this reason, RCTs are said to have a significant advantage for internal validity,
which refers to whether the causal assumptions are satisfied in the study. However,
RCTs are not without weaknesses. In particular, their strong internal validity often
comes with a compromise in external validity. External validity is defined as the extent
to which the conclusions can be generalized beyond a particular study. One common
reason for a lack of external validity is that the study sample may not be representative
of a population of interest. For ethical and logistical reasons, RCTs are often done
using a convenient sample of subjects who are willing to be study subjects. This is an
example of sample selection bias, making the experimental sample nonrepresentative
of a target population. Another potential problem of external validity is that RCTs are
often conducted in an environment (e.g., laboratory) quite different from real-world
situations. In addition, RCTsmay use interventions that are unrealistic in nature. As we
saw in the résumé experiment, however, researchers have attempted to overcome these
problems by conducting RCTs in the field and making their interventions as realistic
as possible.

The main advantage of randomized controlled trials (RCTs) is their improved
internal validity—the extent to which causal assumptions are satisfied in the
study. One weakness of RCTs, however, is the potential lack of external validity—
the extent to which the conclusions can be generalized beyond a particular study.
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Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote?  We’ve been talking about the problem for years, but 
it only seems to get worse.  This year, we’re taking a new approach.
We’re sending this mailing to you and your neighbors to publicize who does and does not 
vote.

The chart shows the names of some of your neighbors, showing which have voted in the 
past.  After the August 8 election, we intend to mail an updated chart.  You and your 
neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY – VOTE!

MAPLE DR
9995 JOSEPH JAMES SMITH
995 JENNIFER KAY SMITH
9997 RICHARD B JACKSON
9999 KATHY MARIE JACKSON

Aug 06Nov 04
Voted
Voted
Voted
Voted

Aug 04
Voted

Figure 2.1. Naming-and-Shaming Get-out-the-Vote Message. Reprinted from Gerber,
Green, and Larimer (2008).

2.4.2 SOCIAL PRESSURE AND VOTER TURNOUT
We consider a study of peer pressure and voter turnout,2 another example of an

RCT. Three social scientists conducted an RCT in which they investigated whether
social pressure within neighborhoods increases participation. Specifically, during a
primary election in the state of Michigan, they randomly assigned registered voters
to receive different get-out-the-vote (GOTV) messages and examined whether sending
postcards with these messages increased turnout. The researchers exploited the fact
that the turnout of individual voters is public information in the United States.

The GOTV message of particular interest was designed to induce social pressure by
telling voters that after the election their neighbors would be informed about whether
they voted in the election or not. The researchers hypothesized that such a naming-
and-shaming GOTV strategy would increase participation. An example of the actual
naming-and-shaming message is shown in figure 2.1. In addition to the control group,
which did not receive any mailing, the study also included other GOTV messages.
For example, a standard “civic duty” message began with the same first two sentences
of the naming-and-shaming message, but did not contain the additional information
about neighbors learning about a person’s electoral participation. Instead, the message
continued to read as follows:

The whole point of democracy is that citizens are active participants in
government; that we have a voice in government. Your voice starts with your
vote. On August 8, remember your rights and responsibilities as a citizen.
Remember to vote. DO YOUR CIVIC DUTY – VOTE!

2 This section is based on Alan S. Gerber, Donald P. Green, and Christopher W. Larimer (2008) “Social
pressure and voter turnout: Evidence from a large-scale field experiment.” American Political Science Review,
vol. 102, no. 1, pp. 33–48.
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Another important feature of this RCT is that the researchers attempted to separate
the effect of naming-and-shaming from that of being observed. In many RCTs, there
is a concern that study subjects may behave differently if they are aware of being
observed by researchers. This phenomenon is called theHawthorne effect, named after
the factory where researchers observed an increase in workers’ productivity simply
because they knew that they were being monitored as part of a study. To address this
issue, the study included another GOTVmessage, which starts with “YOUAREBEING
STUDIED!” followed by the same first two sentences as the naming-and-shaming
message. The rest of the message reads,

This year, we’re trying to figure out why people do or do not vote. We’ll be
studying voter turnout in the August 8 primary election. Our analysis will be
based on public records, so you will not be contacted again or disturbed in any
way. Anything we learn about your voting or not voting will remain confidential
and will not be disclosed to anyone else. DO YOUR CIVIC DUTY – VOTE!

The Hawthorne effect refers to the phenomenon where study subjects behave
differently because they know they are being observed by researchers.

In this experiment, therefore, there are three treatment groups: voters who receive
either the social pressure message, the civic duty message, or the Hawthorne effect
message. The experiment also has a control group which consists of those voters
receiving no message. The researchers randomly assigned each voter to one of the four
groups and examined whether the voter turnout was different across the groups.

Now that we understand the design of this experiment, let us analyze the data. The
data file, which is in CSV format, is named social.csv and can be loaded into R
via the read.csv() function. Table 2.4 displays the names and descriptions of the
variables in the social pressure experiment data.

social <- read.csv("social.csv") # load the data

summary(social) # summarize the data

## sex yearofbirth primary2004

## female:152702 Min. :1900 Min. :0.0000

## male :153164 1st Qu.:1947 1st Qu.:0.0000

## Median :1956 Median :0.0000

## Mean :1956 Mean :0.4014

## 3rd Qu.:1965 3rd Qu.:1.0000

## Max. :1986 Max. :1.0000

## messages primary2006 hhsize

## Civic Duty: 38218 Min. :0.0000 Min. :1.000

## Control :191243 1st Qu.:0.0000 1st Qu.:2.000

## Hawthorne : 38204 Median :0.0000 Median :2.000

## Neighbors : 38201 Mean :0.3122 Mean :2.184

## 3rd Qu.:1.0000 3rd Qu.:2.000

## Max. :1.0000 Max. :8.000
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Table 2.4. Social Pressure Experiment Data.

Variable Description
hhsize household size of the voter
messages GOTV messages the voter received (Civic Duty,

Control, Neighbors, Hawthorne)
sex sex of the voter (female or male)
yearofbirth year of birth of the voter
primary2004 whether the voter voted in the 2004 primary election

(1=voted, 0=abstained)
primary2006 whether the voter turned out in the 2006 primary election

(1=voted, 0=abstained)

As shown in section 2.2.5, we can use the tapply() function to compute the
turnout for each treatment group. Subtracting the baseline turnout from the control
group gives the average causal effect of eachmessage. Note that the outcome variable of
interest is the turnout in the 2006 primary election, which is coded as a binary variable
primary2006 where 1 represents turnout and 0 is abstention.

## turnout for each group

tapply(social$primary2006, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 0.3145377 0.2966383 0.3223746 0.3779482

## turnout for control group

mean(social$primary2006[social$messages == "Control"])

## [1] 0.2966383

## subtract control group turnout from each group

tapply(social$primary2006, social$messages, mean) -

mean(social$primary2006[social$messages == "Control"])

## Civic Duty Control Hawthorne Neighbors

## 0.01789934 0.00000000 0.02573631 0.08130991

We find that the naming-and-shaming GOTV message substantially increases
turnout. Compared to the control group turnout, the naming-and-shaming message
increases turnout by 8.1 percentage points, whereas the civic duty message has a much
smaller effect of 1.8 percentage points. It is interesting to see that the Hawthorne effect
of being observed is somewhat greater than the effect of the civic duty message, though
it is far smaller than the effect of the naming-and-shaming message.

Finally, if the randomization of treatment assignment is successful, we should not
observe large differences across groups in the pretreatment variables such as age (indi-
cated by yearofbirth), turnout in the previous primary election (primary2004),
and household size (hhsize). We examine these using the same syntax.
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social$age <- 2006 - social$yearofbirth # create age variable

tapply(social$age, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 49.65904 49.81355 49.70480 49.85294

tapply(social$primary2004, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 0.3994453 0.4003388 0.4032300 0.4066647

tapply(social$hhsize, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 2.189126 2.183667 2.180138 2.187770

We see that the differences in these pretreatment variables are negligible across
groups, confirming that the randomization of treatment assignment makes the four
groups essentially identical to one another on average.

2.5 Observational Studies

Although RCTs can provide an internally valid estimate of causal effects, in many
cases social scientists are unable to randomize treatment assignment in the real
world for ethical and logistical reasons. We next consider observational studies in
which researchers do not conduct an intervention. Instead, in observational studies,
researchers simply observe naturally occurring events and collect and analyze the
data. In such studies, internal validity is likely to be compromised because of possible
selection bias, but external validity is often stronger than that of RCTs. The findings
from observational studies are typically more generalizable because researchers can
examine the treatments that are implemented among a relevant population in a real-
world environment.

2.5.1 MINIMUM WAGE AND UNEMPLOYMENT
Our discussion of observational studies is based on the aforementioned minimum-

wage debate. Two social science researchers examined the impact of raising the
minimum wage on employment in the fast-food industry.3 In 1992, the state of
New Jersey (NJ) in the United States raised the minimum wage from $4.25 to $5.05
per hour. Did such an increase in the minimumwage reduce employment as economic
theory predicts? As discussed above, answering this question requires inference about
the NJ employment rate in the absence of such a raise in the minimum wage. Since this

3 This section is based on David Card and Alan Krueger (1994) “Minimum wages and employment: A case
study of the fast-food industry in New Jersey and Pennsylvania.” American Economic Review, vol. 84, no. 4,
pp. 772–793.
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Table 2.5. Minimum-Wage Study Data.

Variable Description
chain name of the fast-food restaurant chain
location location of the restaurants (centralNJ, northNJ, PA,

shoreNJ, southNJ)
wageBefore wage before the minimum-wage increase
wageAfter wage after the minimum-wage increase
fullBefore number of full-time employees before the

minimum-wage increase
fullAfter number of full-time employees after the minimum-wage

increase
partBefore number of part-time employees before the

minimum-wage increase
partAfter number of part-time employees after the minimum-wage

increase

counterfactual outcome is not observable, wemust somehow estimate it using observed
data.

One possible strategy is to look at another state in which the minimum wage did
not increase. For example, the researchers of this study chose the neighboring state,
Pennsylvania (PA), on the grounds that NJ’s economy resembles that of Pennsylvania,
and hence the fast-food restaurants in the two states are comparable. Under this
cross-section comparison design, therefore, the fast-food restaurants in NJ serve as the
treatment group receiving the treatment (i.e., the increase in the minimum wage),
whereas those in PA represent the control group, which did not receive such a
treatment. To collect pretreatment and outcome measures, the researchers surveyed
the fast-food restaurants before and after the minimum wage increase. Specifically,
they gathered information about the number of full-time employees, the number of
part-time employees, and their hourly wages, for each restaurant.

The CSV file minwage.csv contains this data set. As usual, the read.csv()
function loads the data set, the dim() function gives the number of observations
and the number of variables, and the summary() function provides a summary of
each variable. Table 2.5 displays the names and descriptions of the variables in the
minimum-wage study data.

minwage <- read.csv("minwage.csv") # load the data

dim(minwage) # dimension of data

## [1] 358 8

summary(minwage) # summary of data

## chain location wageBefore

## burgerking:149 centralNJ: 45 Min. :4.250

## kfc : 75 northNJ :146 1st Qu.:4.250
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## roys : 88 PA : 67 Median :4.500

## wendys : 46 shoreNJ : 33 Mean :4.618

## southNJ : 67 3rd Qu.:4.987

## Max. :5.750

## wageAfter fullBefore fullAfter

## Min. :4.250 Min. : 0.000 Min. : 0.000

## 1st Qu.:5.050 1st Qu.: 2.125 1st Qu.: 2.000

## Median :5.050 Median : 6.000 Median : 6.000

## Mean :4.994 Mean : 8.475 Mean : 8.362

## 3rd Qu.:5.050 3rd Qu.:12.000 3rd Qu.:12.000

## Max. :6.250 Max. :60.000 Max. :40.000

## partBefore partAfter

## Min. : 0.00 Min. : 0.00

## 1st Qu.:11.00 1st Qu.:11.00

## Median :16.25 Median :17.00

## Mean :18.75 Mean :18.69

## 3rd Qu.:25.00 3rd Qu.:25.00

## Max. :60.00 Max. :60.00

To make sure that the restaurants followed the law, we first examine whether the
minimum-wage actually increased in NJ after the law was enacted. We first subset the
data based on location and then calculate the proportion of restaurants in each state
with hourly wages less than the new minimum wage in NJ, i.e., $5.05. This analysis can
be done using the wageBefore and wageAfter variables, which represent the wage
before and after the NJ law went into effect. The subset() function can be used to
conduct this analysis.

## subsetting the data into two states

minwageNJ <- subset(minwage, subset = (location != "PA"))

minwagePA <- subset(minwage, subset = (location == "PA"))

## proportion of restaurants whose wage is less than $5.05

mean(minwageNJ$wageBefore < 5.05) # NJ before

## [1] 0.9106529

mean(minwageNJ$wageAfter < 5.05) # NJ after

## [1] 0.003436426

mean(minwagePA$wageBefore < 5.05) # PA before

## [1] 0.9402985

mean(minwagePA$wageAfter < 5.05) # PA after

## [1] 0.9552239
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We observe that more than 91% of NJ restaurants were paying less than $5.05
before the minimum wage was raised and yet afterwards the proportion of such
restaurants dramatically declined to less than 1%. In contrast, this proportion is
essentially unchanged in PA, suggesting that the NJ law had minimal impact on the
wages in PA restaurants. The analysis shows that the NJ restaurants followed the law
by increasing their wage above the new minimum wage $5.05 while the PA restaurants
did not have to make a similar change.

We now use the PA restaurants as the control group and estimate the average causal
effect of increasing the minimum wage on employment among the NJ restaurants.
An economic theory would predict that raising the minimum wage will encourage
employers to replace full-time employees with part-time ones to recoup the increased
cost in wages. To test this theory, we examine the proportion of full-time employees
as a key outcome variable by simply comparing the sample mean of this variable
between the NJ and PA restaurants after the NJ law went into effect. Let’s compute
this difference-in-means estimator.

## create a variable for proportion of full-time employees in NJ and PA

minwageNJ$fullPropAfter <- minwageNJ$fullAfter /

(minwageNJ$fullAfter + minwageNJ$partAfter)

minwagePA$fullPropAfter <- minwagePA$fullAfter /

(minwagePA$fullAfter + minwagePA$partAfter)

## compute the difference-in-means

mean(minwageNJ$fullPropAfter) - mean(minwagePA$fullPropAfter)

## [1] 0.04811886

The result of this analysis suggests that the increase in the minimum wage had no
negative impact on employment. If anything, it appears to have slightly increased the
proportion of full-time employment in NJ fast-food restaurants.

2.5.2 CONFOUNDING BIAS
The important assumption of observational studies is that the treatment and control

groups must be comparable with respect to everything related to the outcome other
than the treatment. In the current example, we cannot attribute the above difference in
the full-time employment rate between NJ and PA restaurants to the minimum-wage
increase in NJ if, for example, there is a competing industry for low-skilled workers in
NJ but such an industry does not exist in PA. If that is the case, then the restaurants in
the two states are not comparable and PA restaurants cannot serve as a valid control
group for NJ restaurants. Indeed, NJ restaurants may have had a relatively high full-
time employment rate, even in the absence of the increased minimum wage, in order
to attract low-skilled workers. More generally, any other differences that exist between
the fast-food restaurants in the two states before the administration of the NJ law would
bias our inference if they are also related to outcomes.

The pretreatment variables that are associated with both the treatment and outcome
variables are known as confounders. They are the variables that are realized prior to
the administration of treatment and hence are not causally affected by the treatment.
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However, they may determine who is likely to receive the treatment and influence the
outcome. The existence of such variables is said to confound the causal relationship
between the treatment and outcome, making it impossible to draw causal inferences
from observational data. Confounding bias of this type is often a serious concern for
social science research because in many cases human beings self-select into treatments.
The aforementioned possibility that there exists a competing industry in NJ but not in
PA is an example of confounding.

A pretreatment variable that is associated with both the treatment and the
outcome variables is called a confounder and is a source of confounding bias
in the estimation of the treatment effect.

Confounding bias due to self-selection into the treatment group is called selection
bias. Selection bias often arises in observational studies because researchers have no
control over who receives the treatment. In the minimum-wage study, NJ politicians
decided to increase the minimum wage at this particular moment in time whereas
politicians in PA did not. One might suspect that there were reasons, related to the
economy and employment in particular, why the minimum wage was raised in NJ
but not in PA. If that is the case, then the cross-sectional comparison of NJ and
PA after the minimum-wage increase in NJ is likely to yield selection bias. The lack
of control over treatment assignment means that those who self-select themselves
into the treatment group may differ significantly from those who do not in terms of
observed and unobserved characteristics. This makes it difficult to determine whether
the observed difference in outcome between the treatment and control groups is due
to the difference in the treatment condition or the differences in confounders. The
possible existence of confounding bias is the reason behind the existence of the popular
mantra, “Association does not necessarily imply causation.”

In observational studies, the possibility of confounding bias can never be ruled out.
However, researchers can try to address it by means of statistical control, whereby the
researcher adjusts for confounders using statistical procedures.We describe some basic
strategies in this section. One simple way is the statistical method called subclassifica-
tion. The idea is to make the treatment and control groups as similar to each other as
possible by comparing them within a subset of observations defined by shared values
in pretreatment variables or a subclass. For example, we notice that the PA sample
has a larger proportion of Burger Kings than the NJ sample. This difference between
the two states could confound the relationship between minimum-wage increase and
employment if, for example, Burger King has an employment policy that is different
from that of other fast-food chains. To address this possibility, we could conduct a
comparison only among Burger King restaurants. This analysis enables us to eliminate
the confounding bias due to different fast-food chains through statistical control.

To begin our analysis, we first check the proportions of different fast-food chains for
each of the two samples. We use the prop.table() function, which takes as its main
input the output from the table() function, i.e., a table of counts, and converts it to
proportions.
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prop.table(table(minwageNJ$chain))

##

## burgerking kfc roys wendys

## 0.4054983 0.2233677 0.2508591 0.1202749

prop.table(table(minwagePA$chain))

##

## burgerking kfc roys wendys

## 0.4626866 0.1492537 0.2238806 0.1641791

The result shows that PA has a higher proportion of Burger King restaurants
than NJ. We compare the full-time employment rate between NJ and PA Burger
King restaurants after the increase in the minimum wage. Though not shown
here, a similar analysis can be conducted for other fast-food chain restaurants
as well.

## subset Burger King only

minwageNJ.bk <- subset(minwageNJ, subset = (chain == "burgerking"))

minwagePA.bk <- subset(minwagePA, subset = (chain == "burgerking"))

## comparison of full-time employment rates

mean(minwageNJ.bk$fullPropAfter) - mean(minwagePA.bk$fullPropAfter)

## [1] 0.03643934

This finding is quite similar to the overall result presented earlier, suggesting that
the fast-food chain may not be a confounding factor.

Another possible confounder is the location of restaurants. In particular, it may
be the case that the NJ Burger King restaurants closer to PA yield a more credible
comparison to those in PA, perhaps because their local economies share similar
characteristics. To address this possible confounding bias, we may further subclassify
the data on the basis of restaurant location. Specifically, we focus on the Burger King
restaurants located in northern and southern NJ that are near PA, while excluding
those in the Jersey shore and central New Jersey, and repeat the analysis. This
analysis adjusts for both the type of restaurants and their locations through statistical
control.

minwageNJ.bk.subset <-

subset(minwageNJ.bk, subset = ((location != "shoreNJ") &

(location != "centralNJ")))

mean(minwageNJ.bk.subset$fullPropAfter) - mean(minwagePA.bk$fullPropAfter)

## [1] 0.03149853
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The result shows that even within this smaller subset of the original data, the esti-
mated impact of the minimum-wage increase remains similar to the overall estimate.
This finding further improves our confidence in the claim that the increase in the
minimum wage had little effect on full-time employment.

Confounding bias can be reduced through statistical control. For example, we
can use the method of subclassification by comparing treated and control units
which have an identical value of a confounding variable.

2.5.3 BEFORE-AND-AFTER AND DIFFERENCE-IN-DIFFERENCES DESIGNS
In observational studies, the data collected over time are a valuable source of

information. Multiple measurements taken over time on the same units are called
longitudinal data or panel data. Longitudinal data often yield a more credible com-
parison of the treatment and control groups than cross-section data because the
former contain additional information about changes over time. In the minimum-
wage study, the researchers had collected the employment and wage information
from the same set of restaurants before the minimum wage was increased in NJ.
This pretreatment information allows several alternative designs for estimating causal
effects in observational studies.

The first possibility is comparison between pre- and posttreatment measure-
ments, which is called the before-and-after design. Instead of comparing the fast-
food restaurants in NJ with those in PA after the increase in the NJ minimum
wage, this design compares the same set of fast-food restaurants in NJ before and
after the minimum wage was raised. We compute the estimate under this design as
follows.

## full-time employment proportion in the previous period for NJ

minwageNJ$fullPropBefore <- minwageNJ$fullBefore /

(minwageNJ$fullBefore + minwageNJ$partBefore)

## mean difference between before and after the minimum wage increase

NJdiff <- mean(minwageNJ$fullPropAfter) - mean(minwageNJ$fullPropBefore)

NJdiff

## [1] 0.02387474

The before-and-after analysis gives an estimate that is similar to those obtained
earlier. The advantage of this design is that any confounding factor that is specific to
each state is held constant because the comparison is done within NJ. The disadvantage
of the before-and-after design, however, is that time-varying confounding factors
can bias the resulting inference. For example, suppose that there is an upwards time
trend in the local economy and wages and employment are improving. If this trend
is not caused by the minimum-wage increase, then we may incorrectly attribute
the outcome difference between the two time periods to the raise in the minimum
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Figure 2.2. The Difference-in-Differences Design in the Minimum-Wage Study. The
observed outcomes, i.e., the average proportion of full-time employees, are shown
before and after the increase in the minimum wage for both the treatment group (fast-
food restaurants in New Jersey; solid black circles) and the control group (restaurants
in Pennsylvania; open black circles). Under the difference-in-differences design, the
counterfactual outcome for the treatment group (solid blue triangle) is estimated by
assuming that the time trend for the treatment group is parallel to the observed trend
for the control group. The estimated average causal effect for New Jersey restaurants is
indicated by the curly brace.

wage. The before-and-after design critically rests upon the nonexistence of such time
trends.

The before-and-after design examines how the outcome variable changed from
the pretreatment period to the posttreatment period for the same set of units. The
design is able to adjust for any confounding factor that is specific to each unit but
does not change over time. However, the design does not address possible bias due
to time-varying confounders.

The difference-in-differences (DiD) design extends the before-and-after design to
address the confounding bias due to time trends. The key assumption behind the DiD
design is that the outcome variable follows a parallel trend in the absence of treatment.
Figure 2.2 graphically illustrates this assumption using the minimum-wage study data.
The figure shows the outcome of interest, i.e., the average proportion of full-time
employees, before and after the increase in the minimum wage for both the treatment
group (fast-food restaurants in NJ, indicated by the solid black circles) and the control
group (restaurants in PA, represented by the open black circles). In this setting, we can
estimate the counterfactual outcome for the treatment group by assuming that the time
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trend for the treatment group is parallel to the observed trend for the control group.
This estimate is indicated by the solid blue triangle.

Here, the counterfactual outcome of interest is the average proportion of full-time
employees that we would have observed if NJ did not raise the minimum wage. We
estimate this counterfactual outcome by supposing that NJ would have experienced
the same economic trend as PA in the absence of the minimum-wage increase. In
the figure, the blue dashed line is drawn to obtain the estimate of this counterfactual
outcome and runs parallel to the observed time trend for the control group (indicated
by the black solid line).

Under the DiD design, the sample average causal effect estimate for the NJ restau-
rants is the difference between the observed outcome after theminimum-wage increase
and the counterfactual outcome derived under the parallel time trend assumption. The
quantity of interest under the DiD design is called the sample average treatment effect
for the treated (SATT). SATT differs from SATE, which is defined in equation (2.1),
because it applies only to the treatment group, which consists of NJ restaurants in
the current example.4 In the figure, this estimate is indicated by the curly brace.
To compute this estimate, we first calculate the difference in the outcome for the
restaurants in PA after and before the minimum wage was raised in NJ. We then
subtract this difference from the estimate obtained under the before-and-after design,
which equals the difference in NJ after and before the minimum-wage increase. The
average causal effect estimate is, therefore, given by the difference in the before-and-
after differences between the treatment and control groups.

In this way, the DiD design uses the pretreatment and posttreatment measurements
obtained for both the treatment and control groups. In contrast, the cross-section
comparison requires only the posttreatment measurements from the two groups, and
the before-and-after design utilizes the pretreatment and posttreatment measurements
for the treatment group alone.

The difference-in-differences (DiD) design uses the following estimate of the
sample average treatment effect for the treated (SATT):

DiD estimate =
(
Yafter

treated − Ybefore
treated

)

︸ ︷︷ ︸
difference for the treatment group

−
(
Yafter

control − Ybefore
control

)

︸ ︷︷ ︸
difference for the control group

.

The assumption is that the counterfactual outcome for the treatment group has a
time trend parallel to that of the control group.

In the case of the minimum-wage study, we can compute the DiD estimate as
follows.

4 Formally, the sample average treatment effect for the treated (SATT) is the sample average of individual-
level causal effect among the treated units, SATT = 1

n1
∑n

i=1 Ti {Yi (1) − Yi (0)}, where Ti is the binary treatment
indicator variable and n1 =∑n

i=1 Ti is the size of the treatment group.
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## full-time employment proportion in the previous period for PA

minwagePA$fullPropBefore <- minwagePA$fullBefore /

(minwagePA$fullBefore + minwagePA$partBefore)

## mean difference between before and after for PA

PAdiff <- mean(minwagePA$fullPropAfter) - mean(minwagePA$fullPropBefore)

## difference-in-differences

NJdiff - PAdiff

## [1] 0.06155831

The result is inconsistent with the prediction of some economists that raising the
minimum wage has a negative impact on employment. To the contrary, our DiD
analysis suggests that, if anything, the increase in the minimum wage may have led
to a small rise in the proportion of full-time employees in NJ fast-food restaurants. The
DiD estimate is greater than the before-and-after estimate, which reflected a negative
trend in PA.

When does the DiD design fail? The DiD design yields an invalid estimate of causal
effect if the time trend of the counterfactual outcome for the treatment group is not par-
allel to the observed time trend for the control group.We cannot verify this assumption
because the counterfactual time trend for the treatment group is unobserved. However,
in some cases, we can increase the credibility of this assumption. For example, if
researchers had collected employment information from the restaurants in earlier time
periods, then they could have examined whether the proportion of full-time employees
in NJ restaurants had changed parallel to that of PA restaurants when the minimum
wage had not been raised.

2.6 Descriptive Statistics for a Single Variable

So far, we have been examining the average outcome as the quantity of interest, but
it is also possible to consider some other statistics of outcome. As the final topic of this
chapter, we discuss how to numerically summarize the distribution of a single variable
using descriptive statistics.We have already seen some examples of descriptive statistics,
including the range (i.e., minimum and maximum values), median, and mean. In
this section, we introduce other commonly used univariate statistics to describe the
distribution of a single variable.

2.6.1 QUANTILES
We begin by introducing quantiles, which divide a set of observations into groups

based on the magnitude of the variable. An example of quantiles is the median, which
divides the data into two groups, one with lower data values and the other with higher
values. That is, the median of a variable equals the middle value if the total number of
observations is odd, whereas the median is the average of two middle values if the total
number of observations is even (because there is no single middle value in this case).
For example, the median of {1, 3, 4, 10} is 3.5, which is the average of the middle values
3 and 4, because this example has an even number of values. Meanwhile, the mean of
this vector is 4.5.
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While both the mean and median measure the center of the distribution, the mean
is more sensitive to outliers. For example, a single observation of extreme value can
dramatically change the mean but it will not affect the median as much. The median of
{1, 3, 4, 10, 82} is 4, but the mean now increases to 20. In the minimum-wage data,
the mean and median wages are similar. For example, the median wage before the
minimum-wage increase is $4.50, which is close to its mean of $4.62.

Themedian of a variable x is defined as:

median =

⎧
⎪⎨

⎪⎩

x((n+1)/2) if n is odd,

1
2
(
x(n/2) + x(n/2+1)

)
if n is even,

(2.2)

where x(i) denotes the value of the i th smallest observation for variable x and n is
the sample size. The median is less sensitive to outliers than the mean and hence
is a more robust measure of the center of a distribution.

To examine the robustness of previous findings, we examine how the increase in
the minimum wage influenced the proportion of full-time employees in terms of the
median rather than the mean. The median of a variable can be computed by using the
median() function.

## cross-section comparison between NJ and PA

median(minwageNJ$fullPropAfter) - median(minwagePA$fullPropAfter)

## [1] 0.07291667

## before and after comparison

NJdiff.med <- median(minwageNJ$fullPropAfter) -

median(minwageNJ$fullPropBefore)

NJdiff.med

## [1] 0.025

## median difference-in-differences

PAdiff.med <- median(minwagePA$fullPropAfter) -

median(minwagePA$fullPropBefore)

NJdiff.med - PAdiff.med

## [1] 0.03701923

These results are largely consistent with those of the previous analysis, though the
DiD estimate is smaller than before. Again, there is little evidence for the hypothesis
that increasing the minimumwage decreases full-time employment. If anything, it may
have instead slightly increased full-time employment.

To obtain a more complete description of the distribution, we can use quartiles,
which divide the data into four groups. The first quartile (or lower quartile) is the
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value under which 25% of the observations fall, while the proportion of observations
below the third quartile (or upper quartile) is 75%. The second quartile is equal to the
median. The quartiles are a part of the output from the summary() function along
with the minimum, mean, and maximum values. In addition, the difference between
the upper and lower quartiles (i.e., 75th percentile and the 25th percentile) is called the
interquartile range or IQR. That is, the IQR represents the range that contains 50% of
the data, thereby measuring the spread of a distribution. This statistic can be computed
by the IQR() function.

## summary shows quartiles as well as minimum, maximum, and mean

summary(minwageNJ$wageBefore)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.25 4.25 4.50 4.61 4.87 5.75

summary(minwageNJ$wageAfter)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.000 5.050 5.050 5.081 5.050 5.750

## interquartile range

IQR(minwageNJ$wageBefore)

## [1] 0.62

IQR(minwageNJ$wageAfter)

## [1] 0

This analysis shows that before the minimum-wage increase, the distribution of
wages ranged from $4.25 to $5.75 with 75% of the fast-food restaurants in NJ having
wages of $4.87 per hour or less. However, after the minimum wage was raised to $5.05,
many restaurants raised their wages just to the newminimumwage but not any higher.
As a result, both the lower and upper quartiles are equal to $5.05, reducing the IQR
from $0.62 to $0.

Finally, quartiles belong to a class of general statistics called quantiles, which divide
the observations into a certain number of equally sized groups. Other quantiles include
terciles (which divide the data into 3 groups), quintiles (5 groups), deciles (10 groups),
and percentiles (100 groups). The quantile() function can generate any quantiles
by specifying the probs argument. This argument takes a sequence of probabilities,
indicating how the data should be divided up. For example, the deciles of the wage
variable are obtained using the seq() function to create a sequence of numbers 0,
0.1, . . . , 0.9, 1.

## deciles (10 groups)

quantile(minwageNJ$wageBefore, probs = seq(from = 0, to = 1, by = 0.1))

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

## 4.25 4.25 4.25 4.25 4.50 4.50 4.65 4.75 5.00 5.00 5.75
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quantile(minwageNJ$wageAfter, probs = seq(from = 0, to = 1, by = 0.1))

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

## 5.00 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.15 5.75

We find that at least 90% of the fast-food restaurants in NJ set their wages to $5.05
or higher after the law was enacted. In contrast, before the increase in the minimum
wage, there were few restaurants that offered wages of $5.05 or higher. Thus, the law
had a dramatic effect on raising the wage to the new minimum wage, but no higher
than that. In fact, the highest wage stayed unchanged at $5.75 even after the minimum
wage was increased.

Quantiles represent a set of data values that divide observations into a certain
number of equally sized groups. They include quartiles (dividing the observations
into 4 groups) and percentiles (100 groups):

• 25th percentile = lower quartile;
• 50th percentile = median;
• 75th percentile = upper quartile.

The difference between the upper and lower quartiles is called the interquartile
range and measures the spread of a distribution.

2.6.2 STANDARD DEVIATION
We have used the range and quantiles (including the IQR) to describe the spread

of a distribution. Another commonly used measure is standard deviation. Before
introducing standard deviation, we first describe a statistic called the root mean square
or RMS. The RMS describes the magnitude of a variable and is defined as

RMS = √
mean of squared entries

=
√

entry12 + entry22 + · · ·
number of entries

=
√√√√ 1

n

n∑

i=1

x2i . (2.3)

Equation (2.3) gives the formal mathematical definition. The equation exactly follows
its name—square each entry, compute the mean, and then take the square root.
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While the mean describes the center of the distribution, the RMS represents the
average absolute magnitude of each data entry, ignoring the sign of the entry (e.g., the
absolute magnitude or absolute value of −2 is 2 and is written as |−2|). For example,
the mean of {−2, −1, 0, 1, 2} is 0 but its RMS is

√
2. In the minimum-wage data,

we can compute the RMS of the change in the proportion of full-time employees
before and after the increase in the minimum wage, which is quite different from
its mean.

sqrt(mean((minwageNJ$fullPropAfter - minwageNJ$fullPropBefore)^2))

## [1] 0.3014669

mean(minwageNJ$fullPropAfter - minwageNJ$fullPropBefore)

## [1] 0.02387474

Thus, on average, the absolute magnitude of change in the proportion of full-time
employees, after theminimumwage was raised, is about 0.3. This represents a relatively
large change even though the average difference is close to zero.

Using the RMS, we can define the sample standard deviation as the average deviation
of each data entry from itsmean. Therefore, the standard deviationmeasures the spread
of a distribution by quantifying how far away data points are, on average, from their
mean. Specifically, the standard deviation is defined as the RMS of deviation from the
average:

standard deviation = RMS of deviation from average

=
√

(entry1 − mean)2 + (entry2 − mean)2 + · · ·
number of entries

=
√√√√ 1

n

n∑

i=1

(xi − x̄)2. (2.4)

In some cases, one uses n − 1 instead of n in the denominator of equation (2.4)
for a reason that will become clear in chapter 7, but this results in only a minor
difference so long as one has enough data. We note that few data points are more
than 2 or 3 standard deviations away from the mean. Hence, knowing the standard
deviation helps researchers understand the approximate range of the data as well.
Finally, the square of the standard deviation is called the variance and represents the
average squared deviation from the mean. We will study variance more closely in later
chapters. Variance is more difficult to interpret than standard deviation, but it has
useful analytical properties, as shown in chapter 6.
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The sample standard deviation measures the average deviation from the mean
and is defined as

standard deviation =
√√√√ 1

n

n∑

i=1

(xi − x̄)2 or

√√√√ 1
n − 1

n∑

i=1

(xi − x̄)2,

where x̄ represents the sample mean, i.e., x̄ = 1
n
∑n

i=1 xi and n is the sample size.
Few data points lie outside 2 or 3 standard deviations away from the mean. The
square of the standard deviation is called the variance.

In R, we can easily compute the standard deviation using the sd() function (this
function uses n − 1 in its denominator). The var() function returns the sample
variance. The examples from the minimum-wage data are given here.

## standard deviation

sd(minwageNJ$fullPropBefore)

## [1] 0.2304592

sd(minwageNJ$fullPropAfter)

## [1] 0.2510016

## variance

var(minwageNJ$fullPropBefore)

## [1] 0.05311145

var(minwageNJ$fullPropAfter)

## [1] 0.0630018

The results indicate that, on average, the proportion of full-time employees for a
NJ fast-food restaurant is approximately 0.2 away from its mean. We find that for this
variable the standard deviation did not changemuch after theminimumwage had been
increased.

2.7 Summary

We began this chapter with the analysis of an experimental study concerning racial
discrimination in the labor market. The fundamental problem of causal inference is
the fact that we observe only one of two potential outcomes and yet the estimation
of causal effect involves comparison between counterfactual and factual outcomes.
This chapter also introduced various research design strategies to infer counterfactual
outcomes from observed data. It is important to understand the assumptions that
underlie each research design as well as their strengths and weaknesses.
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In randomized controlled experiments (RCTs), a simple comparison of the treat-
ment and control groups enables researchers to estimate the causal effects of treatment.
By randomizing the treatment assignment, we can ensure that the treatment and
control groups are, on average, identical to each other in all observed and unobserved
characteristics except for the receipt of treatment. Consequently, any average difference
between the treatment and control groups can be attributed to the treatment. While
RCTs tend to yield internally valid estimates of causal effects, they often suffer from a
lack of external validity, which makes it difficult to generalize empirical conclusions to
a relevant population in real-world settings.

In observational studies, researchers do not directly conduct interventions. Since
some subjects may self-select into the treatment group, the difference in outcome
between the treatment and control groups can be attributed to factors other than the
receipt of treatment. Thus, while observational studies often have stronger external
validity, this advantage typically comes with compromises in internal validity. When
the treatment assignment is not randomized, we must confront the possibility of
confounding bias in observational studies using statistical control. The existence of
confounders that are associated with both the treatment and outcome means that
a simple comparison of the two groups yields misleading inference. We introduced
various research design strategies to reduce such bias, including subclassification,
before-and-after design, and difference-in-differences design.

Finally, we learned how to subset data in various ways using R. Subsetting can
be done using logical values, relational operators, and conditional statements. We
also introduced a number of descriptive statistics that are useful for summarizing
each variable in a data set. They include the mean, median, quantiles, and standard
deviation. R provides a set of functions that enable researchers to compute these and
other descriptive statistics from their data sets.

2.8 Exercises

2.8.1 EFFICACY OF SMALL CLASS SIZE IN EARLY EDUCATION
The STAR (Student–Teacher Achievement Ratio) Project is a four-year longitudinal

study examining the effect of class size in early grade levels on educational performance
and personal development.5 A longitudinal study is one in which the same participants
are followed over time. This particular study lasted from 1985 to 1989 and involved
11,601 students. During the four years of the study, students were randomly assigned
to small classes, regular-sized classes, or regular-sized classes with an aid. In all, the
experiment cost around $12 million. Even though the program stopped in 1989 after
the first kindergarten class in the program finished third grade, the collection of various
measurements (e.g., performance on tests in eighth grade, overall high-school GPA)
continued through to the end of participants’ high-school attendance.

We will analyze just a portion of this data to investigate whether the small class sizes
improved educational performance or not. The data file name is STAR.csv, which is

5 This exercise is in part based on Frederick Mosteller (1995) “The Tennessee study of class size in the early
school grades.” The Future of Children, vol. 5, no. 2, pp. 113–127.
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Table 2.6. STAR Project Data.

Variable Description
race student’s race (white = 1, black = 2, Asian = 3,

Hispanic = 4, Native American = 5, others = 6)
classtype type of kindergarten class (small = 1, regular = 2,

regular with aid = 3)
g4math total scaled score for the math portion of the fourth-grade

standardized test
g4reading total scaled score for the reading portion of the

fourth-grade standardized test
yearssmall number of years in small classes
hsgrad high-school graduation (did graduate = 1,

did not graduate = 0)

in CSV format. The names and descriptions of variables in this data set are displayed
in table 2.6. Note that there are a fair amount of missing values in this data set, which
arise, for example, because some students left a STAR school before third grade, or did
not enter a STAR school until first grade.

1. Create a new factor variable called kinder in the data frame. This variable
should recode classtype by changing integer values to their corresponding
informative labels (e.g., change 1 to small etc.). Similarly, recode the race
variable into a factor variable with four levels (white, black, hispanic,
others) by combining the Asian and Native American categories with the
others category. For the race variable, overwrite the original variable in the data
frame rather than creating a new one. Recall that na.rm = TRUE can be added
to functions in order to remove missing data (see section 1.3.5).

2. How does performance on fourth-grade reading andmath tests for those students
assigned to a small class in kindergarten compare with those assigned to a regular-
sized class? Do students in the smaller classes perform better? Use means to
make this comparison while removing missing values. Give a brief substantive
interpretation of the results. To understand the size of the estimated effects,
compare them with the standard deviation of the test scores.

3. Instead of just comparing average scores of reading and math tests between those
students assigned to small classes and those assigned to regular-sized classes, look
at the entire range of possible scores. To do so, compare a high score, defined
as the 66th percentile, and a low score (the 33rd percentile) for small classes
with the corresponding score for regular classes. These are examples of quantile
treatment effects. Does this analysis add anything to the analysis based on mean
in the previous question?

4. Some students were in small classes for all four years that the STAR program ran.
Others were assigned to small classes for only one year and had either regular-
sized classes or regular-sized classes with an aid for the rest. How many students
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Table 2.7. Gay Marriage Data.

Variable Description
study source of the data (1 = study 1, 2 = study 2)
treatment five possible treatment assignment options
wave survey wave (a total of seven waves)
ssm five-point scale on same-sex marriage, higher scores

indicate support.

of each type are in the data set? Create a contingency table of proportions using
the kinder and yearssmall variables. Does participation in more years of
small classes make a greater difference in test scores? Compare the average and
median reading andmath test scores across students who spent different numbers
of years in small classes.

5. Examine whether the STAR program reduced achievement gaps across different
racial groups. Begin by comparing the average reading and math test scores
between white and minority students (i.e., blacks and Hispanics) among those
students who were assigned to regular-sized classes with no aid. Conduct the
same comparison among those students who were assigned to small classes. Give
a brief substantive interpretation of the results of your analysis.

6. Consider the long-term effects of kindergarten class size. Compare high-school
graduation rates across students assigned to different class types. Also, examine
whether graduation rates differ depending on the number of years spent in
small classes. Finally, as in the previous question, investigate whether the STAR
program has reduced the racial gap between white and minority students’
graduation rates. Briefly discuss the results.

2.8.2 CHANGING MINDS ON GAY MARRIAGE
In this exercise, we analyze the data from two experiments in which households were

canvassed for support on gay marriage.6 Note that the original study was later retracted
due to allegations of fabricated data; we will revisit this issue in a follow-up exercise (see
section 3.9.1). In this exercise, however, we analyze the original data while ignoring the
allegations.

Canvassers were given a script leading to conversations that averaged about twenty
minutes. A distinctive feature of this study is that gay and straight canvassers were
randomly assigned to households, and canvassers revealed whether they were straight
or gay in the course of the conversation. The experiment aims to test the “contact
hypothesis,” which contends that out-group hostility (towards gay people in this case)
diminishes when people from different groups interact with one another. The data
file is gay.csv, which is a CSV file. Table 2.7 presents the names and descriptions

6 This exercise is based on the following article: Michael J. LaCour and Donald P. Green (2015) “When contact
changes minds: An experiment on transmission of support for gay equality.” Science, vol. 346, no. 6215, pp. 1366–
1369.
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of the variables in this data set. Each observation of this data set is a respondent
giving a response to a four-point survey item on same-sex marriage. There are two
different studies in this data set, involving interviews during seven different time
periods (i.e., seven waves). In both studies, the first wave consists of the interview before
the canvassing treatment occurs.

1. Using the baseline interview wave before the treatment is administered, examine
whether randomization was properly conducted. Base your analysis on the
three groups of study 1: “same-sex marriage script by gay canvasser,” “same-sex
marriage script by straight canvasser” and “no contact.” Briefly comment on the
results.

2. The second wave of the survey was implemented two months after canvassing.
Using study 1, estimate the average treatment effects of gay and straight can-
vassers on support for same-sex marriage, separately. Give a brief interpretation
of the results.

3. The study contained another treatment that involves contact, but does not
involve using the gay marriage script. Specifically, the authors used a script
to encourage people to recycle. What is the purpose of this treatment? Using
study 1 and wave 2, compare outcomes from the treatment “same-sex marriage
script by gay canvasser” to “recycling script by gay canvasser.” Repeat the same
for straight canvassers, comparing the treatment “same-sex marriage script by
straight canvasser” to “recycling script by straight canvasser.” What do these
comparisons reveal? Give a substantive interpretation of the results.

4. In study 1, the authors reinterviewed the respondents six different times (in
waves 2 to 7) after treatment, at two-month intervals. The last interview, in
wave 7, occurs one year after treatment. Do the effects of canvassing last? If
so, under what conditions? Answer these questions by separately computing the
average effects of straight and gay canvassers with the same-sex marriage script
for each of the subsequent waves (relative to the control condition).

5. The researchers conducted a second study to replicate the core results of the first
study. In this study, same-sex marriage scripts are given only by gay canvassers.
For study 2, use the treatments “same-sex marriage script by gay canvasser” and
“no contact” to examine whether randomization was appropriately conducted.
Use the baseline support from wave 1 for this analysis.

6. For study 2, estimate the treatment effects of gay canvassing using data from
wave 2. Are the results consistent with those of study 1?

7. Using study 2, estimate the average effect of gay canvassing at each subsequent
wave and observe how it changes over time. Note that study 2 did not have a
fifth or sixth wave, but the seventh wave occurred one year after treatment, as in
study 1. Draw an overall conclusion from both study 1 and study 2.
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Table 2.8. Leader Assassination Data.

Variable Description
country country
year year
leadername name of the leader who was targeted
age age of the targeted leader
politybefore average polity score of the country during the three-year

period prior to the attempt
polityafter average polity score of the country during the three-year

period after the attempt
civilwarbefore 1 if the country was in civil war during the three-year

period prior to the attempt, 0 otherwise
civilwarafter 1 if the country was in civil war during the

three-year period after the attempt, 0 otherwise
interwarbefore 1 if the country was in international war during the

three-year period prior to the attempt, 0 otherwise
interwarafter 1 if the country was in international war during the

three-year period after the attempt, 0 otherwise
result result of the assassination attempt

2.8.3 SUCCESS OF LEADER ASSASSINATION AS A NATURAL EXPERIMENT
One longstanding debate in the study of international relations concerns the

question of whether individual political leaders canmake a difference. Some emphasize
that leaders with different ideologies and personalities can significantly affect the
course of a nation. Others argue that political leaders are severely constrained by
historical and institutional forces. Did individuals like Hitler, Mao, Roosevelt, and
Churchill make a big difference? The difficulty of empirically testing these arguments
stems from the fact that the change of leadership is not random and there are many
confounding factors to be adjusted for.

In this exercise, we consider a natural experiment in which the success or failure
of assassination attempts is assumed to be essentially random.7 Each observation of
the CSV data set leaders.csv contains information about an assassination attempt.
Table 2.8 presents the names and descriptions of variables in this leader assassination
data set. The polity variable represents the so-called polity score from the Polity
Project. The Polity Project systematically documents and quantifies the regime types of
all countries in the world from 1800. The polity score is a 21-point scale ranging from
−10 (hereditary monarchy) to 10 (consolidated democracy). The result variable is a
10-category factor variable describing the result of each assassination attempt.

1. Howmany assassination attempts are recorded in the data? Howmany countries
experience at least one leader assassination attempt? (The unique() function,

7 This exercise is based on the following article: Benjamin F. Jones and Benjamin A. Olken (2009) “Hit or miss?
The effect of assassinations on institutions and war.” American Economic Journal: Macroeconomics, vol. 1, no. 2,
pp. 55–87.
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which returns a set of unique values from the input vector, may be useful here.)
What is the average number of such attempts (per year) among these countries?

2. Create a new binary variable named success that is equal to 1 if a leader dies
from the attack and 0 if the leader survives. Store this new variable as part of the
original data frame. What is the overall success rate of leader assassination? Does
the result speak to the validity of the assumption that the success of assassination
attempts is randomly determined?

3. Investigate whether the average polity score over three years prior to an assassi-
nation attempt differs on average between successful and failed attempts. Also,
examine whether there is any difference in the age of targeted leaders between
successful and failed attempts. Briefly interpret the results in light of the validity
of the aforementioned assumption.

4. Repeat the same analysis as in the previous question, but this time using the
country’s experience of civil and international war. Create a new binary variable
in the data frame called warbefore. Code the variable such that it is equal to 1
if a country is in either civil or international war during the three years prior to
an assassination attempt. Provide a brief interpretation of the result.

5. Does successful leader assassination cause democratization? Does successful
leader assassination lead countries to war? When analyzing these data, be sure
to state your assumptions and provide a brief interpretation of the results.



Chapter 3

Measurement

Not everything that can be counted counts, and not
everything that counts can be counted.
— William Bruce Cameron, Informal Sociology

Measurement plays a central role in social science research. In this chapter, we
first discuss survey methodology, which is perhaps the most common mode of data
collection. For example, the minimum-wage study discussed in chapter 2 used a survey
to measure information about employment at each fast-food restaurant. Surveys are
also effective tools for making inferences about a large target population of interest
from a relatively small sample of randomly selected units. In addition to surveys,
we also discuss the use of latent concepts, such as ideology, that are essential for
social science research. These concepts are fundamentally unobservable and must be
measured using a theoretical model. Thus, issues of measurement often occupy the
intersection of theoretical and empirical analyses in the study of human behavior.
Finally, we introduce a basic clustering method, which enables researchers to conduct
an exploratory analysis of data by discovering interesting patterns. We also learn how
to plot data in various ways and compute relevant descriptive statistics in R.

3.1 Measuring Civilian Victimization during Wartime

After the September 11 attacks, the United States and its allies invaded Afghanistan
with the goal of dismantling al-Qaeda, which had been operating there under the
protection of the Taliban government. In 2003, the North Atlantic Treaty Organization
(NATO) became involved in the conflict, sending in a coalition of international troops
organized under the name of the International Security Assistance Force (ISAF). To
wage this war against the Taliban insurgency, the ISAF engaged in a “hearts and
minds” campaign, combining economic assistance, service delivery, and protection in
order to win the support of civilians. To evaluate the success of such a campaign, it
is essential to measure and understand civilians’ experiences and sentiments during
the war. However, measuring the experiences and opinions of civilians during wartime
is a challenging task because of harsh security conditions, posing potential threats to
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Table 3.1. Afghanistan Survey Data.

Variable Description

province province where the respondent lives
district district where the respondent lives
village.id ID of the village where the respondent lives
age age of the respondent
educ.years years of education of the respondent
employed whether the respondent is employed
income monthly income of the respondent (five levels)
violent.exp.ISAF whether the respondent experienced violence by ISAF
violent.exp.taliban whether the respondent experienced violence by the

Taliban
list.group randomly assigned group for the list experiment

(control, ISAF, taliban)
list.response response to the list experiment question (0–4)

interviewers and respondents. This means that respondents may inaccurately answer
survey questions in order to avoid giving socially undesirable responses.

A group of social scientists conducted a public opinion survey in southern
Afghanistan, the heartland of the insurgency.1 The survey was administered to a sample
of 2754 respondents between January and February 2011. The researchers note that
the participation rate was 89%. That is, they originally contacted 3097 males and 343
of them refused to take the survey. Because local culture prohibited interviewers from
talking to female citizens, the respondents were all males.

We begin by summarizing the characteristics of respondents in terms of age, years of
education, employment, andmonthly income in Afghani (the local currency). The CSV
file afghan.csv contains the survey data and can be loaded via the read.csv()
function. The names and descriptions of the variables are given in table 3.1. We use the
summary() function to provide numerical summaries of several variables.

## load data

afghan <- read.csv("afghan.csv")

## summarize variables of interest

summary(afghan$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 15.00 22.00 30.00 32.39 40.00 80.00

1 This section is based on the following two articles: Jason Lyall, Graeme Blair, and Kosuke Imai (2013)
“Explaining support for combatants during wartime: A survey experiment in Afghanistan.” American Political
Science Review, vol. 107, no. 4 (November), pp. 679–705 and Graeme Blair, Kosuke Imai, and Jason Lyall (2014)
“Comparing and combining list and endorsement experiments: Evidence from Afghanistan.” American Journal of
Political Science, vol. 58, no. 4 (October), pp. 1043–1063.
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summary(afghan$educ.years)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.000 0.000 1.000 4.002 8.000 18.000

summary(afghan$employed)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0000 0.0000 1.0000 0.5828 1.0000 1.0000

summary(afghan$income)

## 10,001-20,000 2,001-10,000 20,001-30,000

## 616 1420 93

## less than 2,000 over 30,000 NA’s

## 457 14 154

We observe that the average age of the respondents is 32, a large fraction of them
have very little education, and approximately 60% of the respondents are employed.
Most respondents have a monthly income of less than 10,000 Afghani, which is about
200 dollars.

While civilians are often victimized during war, it is difficult to systematically
measure the extent to which attacks against civilians occur. A survey measure, though
it is based on self-reporting, is one possible way to quantify civilian victimization. In
this survey, the interviewers asked the following question: “Over the past year, have
you or anyone in your family suffered harm due to the actions of the Foreign Forces /
the Taliban?” They explained to the respondents that the phrase “harm” refers to
physical injury, as well as property damage. We analyze the violent.exp.ISAF and
violent.exp.taliban variables, which represent whether the respondents were
harmed by the ISAF and the Taliban, respectively.

prop.table(table(ISAF = afghan$violent.exp.ISAF,

Taliban = afghan$violent.exp.taliban))

## Taliban

## ISAF 0 1

## 0 0.4953445 0.1318436

## 1 0.1769088 0.1959032

Using the table()and prop.table() functions, which were introduced in
chapter 2, the analysis shows that over the past year, 37%(= 17.7% + 19.6%) and 33%
(= 13.2% + 19.6%) of the respondents were victimized by the ISAF (second row)
and the Taliban (second column), respectively. Approximately 20% of the respondents
suffered from physical or property damage caused by both parties. This finding
suggests that Afghan civilians were victimized (or at least they perceived that they were
being victimized) by both the ISAF and the Taliban to a similar extent, rather than one
warring party disproportionately harming civilians.
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3.2 Handling Missing Data in R

In many surveys, researchers may encounter nonresponse because either respon-
dents refuse to answer some questions or they simply do not know the answer. Such
missing values are also common in other types of data. For example, many developing
countries lack certain official statistics such as the gross domestic product (GDP)
or unemployment rate. In R, missing data are coded as NA. For example, in the
Afghanistan survey, we saw in the above analysis that 154 respondents did not provide
their income. Since NA is a special value reserved for missing data, we can count the
number of missing observations using the is.na() function. This function returns a
logical value of TRUE if its argument is NA and yields FALSE otherwise.

## print income data for first 10 respondents

head(afghan$income, n = 10)

## [1] 2,001-10,000 2,001-10,000 2,001-10,000 2,001-10,000

## [5] 2,001-10,000 <NA> 10,001-20,000 2,001-10,000

## [9] 2,001-10,000 <NA>

## 5 Levels: 10,001-20,000 2,001-10,000 ... over 30,000

## indicate whether respondents’ income is missing

head(is.na(afghan$income), n = 10)

## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

## [10] TRUE

Here, we see that the sixth and tenth respondents are not reporting their monthly
income and hence are coded as NA. The syntax is.na(afghan$income) returns
a vector of logical values, each indicating whether the corresponding respondent
provided an answer to the income question. Thus, the sixth and tenth elements of the
output from this syntax are TRUE. Given this function, it is now straightforward to
count the total number and proportion of missing data for this variable.

sum(is.na(afghan$income)) # count of missing values

## [1] 154

mean(is.na(afghan$income)) # proportion missing

## [1] 0.05591866

Some R functions treat missing data differently from other data. For example, the
mean() function returns NA when a variable contains at least one missing value.
Fortunately, the mean() function takes an additional argument na.rm, which can
be set to TRUE so that missing data are removed before the function is applied.
Many other functions, including max(), min(), and median(), take this argument
as well.
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x <- c(1, 2, 3, NA)

mean(x)

## [1] NA

mean(x, na.rm = TRUE)

## [1] 2

In our data, the application of the table() function above ignored missing data,
as if observations with missing values were not part of the data set. We can tell
these functions to explicitly account for missing data. This can be done by setting the
additional argument exclude to NULL so that no data including a missing value is
excluded.

prop.table(table(ISAF = afghan$violent.exp.ISAF,

Taliban = afghan$violent.exp.taliban, exclude = NULL))

## Taliban

## ISAF 0 1 <NA>

## 0 0.482933914 0.128540305 0.007988381

## 1 0.172476398 0.190994916 0.007988381

## <NA> 0.002541757 0.002904866 0.003631082

We find that almost all respondents answered the victimization questions. Indeed,
the nonresponse rates for these questions are less than 2%. The nonresponse rates
for the Taliban and ISAF victimization questions can be obtained by adding the
entries of the final column and those of the final row of the above generated table,
respectively. It appears that the Afghan civilians are willing to answer questions about
their experiences of violence.

Finally, the na.omit() function provides a straightforward way to remove all
observations with at least one missing value from a data frame. The function then
returns another data frame without these observations. However, we should note that
this operation will result in listwise deletion, which eliminates an entire observation if
at least one of its variables has a missing value. For example, if a respondent answers
every question asked of him except for the question about income, listwise deletion
would completely remove all of his information from the data, including the responses
to the questions that he did answer. In our Afghanistan survey data, other variables
that we have not yet discussed also have missing data. As a result, applying the
na.omit() function to the afghan data frame returns a subset of the data with far
fewer observations than applying the same function to the income variable alone.

afghan.sub <- na.omit(afghan) # listwise deletion

nrow(afghan.sub)

## [1] 2554
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length(na.omit(afghan$income))

## [1] 2600

We find that the procedure of listwise deletion yields a data set of 2554 observations,
whereas a total of 2600 respondents answered the income question. The difference
represents the number of respondents who did answer the income question but refused
to answer at least one other question in the survey.

3.3 Visualizing the Univariate Distribution

Up until now, we have been summarizing the distribution of each variable in a data
set using descriptive statistics such as the mean, median, and quantiles. However, it
is often helpful to visualize the distribution itself. In this section, we introduce several
ways to visualize the distribution of a single variable in R. When making a figure in
RStudio, you may occasionally encounter the error message “figure margins too large.”
We can solve this problem by increasing the size of the plots pane.

3.3.1 BAR PLOT
To summarize the distribution of a factor variable or factorial variable with several

categories (see section 2.2.5), a simple table with counts or proportions, as produced
above using the table() and prop.table() functions, is often sufficient. However,
it is also possible to use a bar plot to visualize the distribution. In R, the barplot()
function takes a vector of height and displays a bar plot in a separate graphical window.
In this example, the vector of height represents the proportion of respondents in each
response category.

## a vector of proportions to plot

ISAF.ptable <- prop.table(table(ISAF = afghan$violent.exp.ISAF,

exclude = NULL))

ISAF.ptable

## ISAF

## 0 1 <NA>

## 0.619462600 0.371459695 0.009077705

## make bar plots by specifying a certain range for y-axis

barplot(ISAF.ptable,

names.arg = c("No harm", "Harm", "Nonresponse"),

main = "Civilian victimization by the ISAF",

xlab = "Response category",

ylab = "Proportion of the respondents", ylim = c(0, 0.7))

## repeat the same for victimization by the Taliban

Taliban.ptable <- prop.table(table(Taliban = afghan$violent.exp.taliban,

exclude = NULL))
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barplot(Taliban.ptable,

names.arg = c("No harm", "Harm", "Nonresponse"),

main = "Civilian victimization by the Taliban",

xlab = "Response category",

ylab = "Proportion of the respondents", ylim = c(0, 0.7))

The plots in this book, including these below, may appear different from those
produced by running the corresponding code in R.
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We immediately see that the distributions for civilian victimization by the ISAF and
the Taliban are quite similar. In addition, the nonresponse rate is equally low for both
variables. Note that names.arg is an optional argument unique to the barplot()
function and takes a vector of characters specifying the label for each bar. The above
syntax also illustrates the use of several arguments that are common to other plot
functions and are summarized here:

• main: a character string, i.e., a series of characters in double quotes, for the main
title of the plot

• ylab, xlab: character strings for labeling the vertical axis (i.e., y-axis) and the
horizontal axis (i.e., x-axis), respectively (R will automatically set these arguments
to the default labels if left unspecified)

• ylim, xlim: numeric vectors of length 2 specifying the interval for the y-axis and
x-axis, respectively (R will automatically set these arguments if left unspecified)

3.3.2 HISTOGRAM
The histogram is a common method for visualizing the distribution of a numeric

variable rather than a factor variable. Suppose that we would like to plot the histogram
for the age variable in our Afghanistan survey data. To do this, we first discretize
the variable by creating bins or intervals along the variable of interest. For example,
we may use 5 years as the size of each bin for the age variable, which results in the
intervals [15, 20), [20, 25), [25, 30), and so on. Recall from an exercise of chapter 1 (see
section 1.5.2) that in mathematics square brackets, [ and ], include the limit, whereas
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parentheses, ( and ), exclude it. For example, [20, 25) represents the age range that is
greater than or equal to 20 years old and less than 25 years old. We then count the
number of observations that fall within each bin. Finally, we compute the density for
each bin, which is the height of the bin and is defined as

density = proportion of observations in the bin

width of the bin
.

We often care about not the exact value of each density, but rather the variable’s
distribution as shown by the relationship of the different bins’ densities to one
another within a histogram. We can therefore think of histograms as rectangular
approximations of the distribution.

To create histograms in R, we use the hist() function and set the argument
freq to FALSE. The default for this argument is TRUE, which plots the frequency,
i.e., counts, instead of using density as the height of each bin. Using density rather
than frequency is useful for comparing two distributions, because the density scale
is comparable across distributions even when the number of observations is dif-
ferent. Below, we create histograms for the age variable from the Afghanistan
survey data.

hist(afghan$age, freq = FALSE, ylim = c(0, 0.04), xlab = "Age",

main = "Distribution of respondent’s age")
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Importantly, the area of each bin in a histogram equals the proportion of ob-
servations that fall in that bin. Therefore, in general, we interpret the density scale,
the unit of the vertical axis, as percentage per horizontal unit. In the age example,
the density is measured as percentage per year. This implies that density is not a
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proportion and hence the height of each bin can exceed 1. On the other hand, the
area of each bin represents the percentage of observations it contains, so the areas of
all bins sum to 1. In this way, histograms visualize how observations are distributed
across the different values of the variable of interest. The age distribution for the survey
respondents is skewed towards the left, suggesting that a larger number of young males
were interviewed.

A histogram divides the data into bins where the area of each bin represents
the proportion of observations that fall within the bin. The height of each bin
represents density, which is equal to the proportion of observations within each
bin divided by the width of the bin. A histogram approximates the distribution of
a variable.

Our next histogram features the years of education variable, educ.years.
Instead of letting R automatically choose the width of bins, as we did for
the age variable, we now specify exactly how the bins are created using
[−0.5, 0.5), [0.5, 1.5), [1.5, 2.5), . . . , to center each bin around each of the integer
values, i.e., 0, 1, 2, . . . , corresponding to the observed values. The height of each bin
then represents the proportion of observations that received the corresponding number
of years of education. We implement this by specifying a vector of the breakpoints
between histogram bins with the breaks argument. In this case, the default specifica-
tion, which we will get by leaving the argument unspecified, is [0, 1), [1, 2), [2, 3), . . .
where it is centered around 0.5, 1.5, 2.5, . . . , failing to correspond to the observed
values. Note that the breaks argument can take other forms of input to manipulate
the histogram. For example, it also accepts a single integer specifying the number of
bins for the histogram.

## histogram of education. use “breaks” to choose bins

hist(afghan$educ.years, freq = FALSE,

breaks = seq(from = -0.5, to = 18.5, by = 1),

xlab = "Years of education",

main = "Distribution of respondent’s education")

## add a text label at (x, y) = (3, 0.5)

text(x = 3, y = 0.5, "median")

## add a vertical line representing median

abline(v = median(afghan$educ.years))

The histogram for the years of education variable clearly shows that the education
level of these respondents is extremely low. Indeed, almost half of them have never
attended school.We also add a vertical line and a text label indicating themedian value,
using the abline() and text() functions, respectively. Both of these functions add
a layer to any existing plot, and this is why they are used after the hist() function
in the above example. The text(x,y,z) function adds character text z centered at
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the points specified by the coordinate vectors, (x, y). The abline() function can add
a straight line to an existing plot in the following three ways:

• abline(h=x) to place a horizontal line at height x
• abline(v=x) to place a vertical line at point x
• abline(a=y, b=s) to place a line with intercept y and slope s

A more general function to plot a line is lines(). This function takes two
arguments, x and y. These two arguments must be vectors with the same number
of x-coordinates and y-coordinates respectively. The function will then draw line
segments connecting the point denoted by the first coordinate in argument x and
the first coordinate in argument y, to the point denoted by the second coordinates
in each argument, to the point denoted by the third coordinates in each argument, and
so on. For example, we can draw the median line as done above using this function
instead.

## adding a vertical line representing the median

lines(x = rep(median(afghan$educ.years), 2), y = c(0,0.5))

In this example, we want to create a vertical line at the x value for the median of
afghan$educ.years.We use y values, 0 and 0.5, so that the line will extend between
the bottom and top limits of the histogram respectively. We then need x-coordinates
equal to the median of afghan$educ.years to correspond with each y-coordinate.
To do this easily, we can use the rep() function, whose first argument takes the value
wewant to repeat andwhose second argument takes the number of repetitions, which is
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the length of the resulting vector. The above rep() function creates a vector of
length 2 with the median of afghan$educ.years as each element in that vector.
Thus, a line goes from point (x, y) = (1, 0) to point (x, y) = (1, 0.5), since the median
year of education is 1.

It is also possible to add points to any existing plot using the points() function.
Specifically, in points(x,y), two vectors—x and y—specify the coordinates of
points to be plotted. Finally, R has various functionalities that enable users to choose
different colors, line types, and other aesthetic choices. Some commonly used argu-
ments are given below, but the details about each function can be obtained on their
manual pages:

• col specifies the color to use, such as "blue" and "red". This argument
can be used in many functions including text(), abline(), lines(),
and points(). Type colors() to see all the built-in color names R has
(see section 5.3.3 for more details).

• lty specifies the type of line to be drawn, using either a character or a
numeric value, including "solid" or 1 (default) for solid lines, "dashed"
or 2 for dashed lines, "dotted" or 3 for dotted lines, "dotdash" or 4 for
dotted and dashed lines, and "longdash" or 5 for long dashed lines. This
argument can be used in many functions that produce lines, including
abline() and lines().

• lwd specifies the thickness of lines where lwd=1 is the default value. This
argument can be used in many functions that produce lines, including
abline() and lines().

3.3.3 BOX PLOT
The box plot represents another way to visualize the distributions of a numeric

variable. It is particularly useful when comparing the distribution of several variables by
placing them side by side. A box plot visualizes the median, the quartiles, and the IQR
all together as a single object. To make box plots in R, we use the boxplot() function
by simply giving a variable of interest as an input. Again, we use the age variable as an
example.

## commands for plotting curly braces and text in blue are omitted

boxplot(afghan$age, main = "Distribution of age", ylab = "Age",

ylim = c(10, 80))

As illustrated below, the box contains 50% of the data ranging from the lower
quartile (25th percentile) to the upper quartile (75th percentile) with the solid hori-
zontal line indicating the median value (50th percentile). Then, dotted vertical lines,
each of which has its end indicated by a short horizontal line called a “whisker,”
extend below and above the box. These two dotted lines represent the data that are
contained within 1.5 IQR below the lower quartile and above the upper quartile,
respectively. Furthermore, the observations that fall outside 1.5 IQR from the upper
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and lower quartiles are indicated by open circles. In this plot, the section of the dotted
line extending from the top of the box to the horizontal line represents 1.5 IQR. If
the minimum (maximum) value is contained within 1.5 IQR below the lower quartile
(above the upper quartile), the dotted line will end at the minimum (maximum) value.
The absence of open circles below the horizontal line implies that the minimum value
of this variable is indeed within the 1.5 IQR of the lower quantile.

If we wish to visualize the distribution of a single variable, then a histogram is
often more informative than a box plot because the former shows the full shape of
the distribution. One of the main advantages of a box plot is that it allows us to
compare multiple distributions in a more compact manner than histograms, as the
next example shows. Using the boxplot() function, we can create a box plot for
a different group of observations where the groups are defined by a factor variable.
This is done by using the formula in R, which takes the form y ˜ x. In the current
context, boxplot(y ˜ x, data = d) creates box plots for variable y for different
groups defined by a factor x where the variables, x and y, are taken from the data
frame d. As an illustration, we plot the distribution of the years of education variable by
province.

boxplot(educ.years ~ province, data = afghan,

main = "Education by province", ylab = "Years of education")

We find that the education level in Helmand and Uruzgan provinces is much lower
than that of the other three provinces. It also turns out that civilians in these two
provinces report harm inflicted by both parties more than those who live in the other
provinces. This is shown below by computing the proportion of affirmative answers to
the corresponding question, for each province.
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tapply(afghan$violent.exp.taliban, afghan$province, mean, na.rm = TRUE)

## Helmand Khost Kunar Logar Uruzgan

## 0.50422195 0.23322684 0.30303030 0.08024691 0.45454545

tapply(afghan$violent.exp.ISAF, afghan$province, mean, na.rm = TRUE)

## Helmand Khost Kunar Logar Uruzgan

## 0.5410226 0.2424242 0.3989899 0.1440329 0.4960422

Note that the syntax, na.rm = TRUE, is passed to the mean() function within
the tapply() function so that missing observations are deleted when computing
the mean for each province (see section 3.2).

A box plot visualizes the distribution of a variable by indicating its median,
lower and upper quartiles, and the points outside the 1.5 interquartile range from
the lower and upper quartiles. It enables the comparison of distributions across
multiple variables in a compact manner.

3.3.4 PRINTING AND SAVING GRAPHS
There are a few ways to print and save the graphs you create in R. The easiest way

is to use the menus in RStudio. In RStudio, each time you create a graph using any
of the R plotting functions, a new tab will open in the bottom-right window. To save
an image of the plot, click Export and then either Save Plot as Image or Save
Plot as PDF.
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You can also save or print a graph with a command by using the pdf() function
to open the PDF device before your plotting commands and then the dev.off()
function afterwards to close the device. For example, the following syntax saves the
box plots we just created above as a PDF file educ.pdf in the working directory. The
pdf() function can specify the height and width of the graphics region in inches.

pdf(file = "educ.pdf", height = 5, width = 5)

boxplot(educ.years ~ province, data = afghan,

main = "Education by province", ylab = "Years of education")

dev.off()

In many cases, we want to compare multiple plots by printing them next to each
other in a single figure file. To do this, we use the function par() as par(mfrow =
c(X, Y)) before we start making plots. This will create an X by Y grid of “subplots”
(mfrow stands for multiple figures in rows). Our multiple plots will fill in this grid, row
by row. To fill the grid column by column, you can, instead, use the syntax par(mfcol
= c(X, Y)). Note that the par() function also takes many other arguments that
allow users to control graphics in R. For example, the cex argument changes the size
of a character or symbol, with cex = 1 as the default value. We can set the cex
argument to a value greater than 1 (e.g., par(cex = 1.2)) in order to enlarge the
fonts in displayed graphics. Note that it is also possible to separately specify the size
for different parts of a plot using cex.main (main plot title), cex.lab (axis title
labels), and cex.axis (axis value labels). Executing the following code chunk all at
once creates the two histograms we made earlier in this chapter and saves them side by
side in a single PDF file.

pdf(file = "hist.pdf", height = 4, width = 8)

## one row with 2 plots with font size 0.8

par(mfrow = c(1, 2), cex = 0.8)

## for simplicity omit the text and lines from the earlier example

hist(afghan$age, freq = FALSE,

xlab = "Age", ylim = c(0, 0.04),

main = "Distribution of respondent’s age")

hist(afghan$educ.years, freq = FALSE,

breaks = seq(from = -0.5, to = 18.5, by = 1),

xlab = "Years of education", xlim = c(0, 20),

main = "Distribution of respondent’s education")

dev.off()

3.4 Survey Sampling

Survey sampling is one of the main data collection methods in quantitative social
science research. It is often used to study public opinion and behavior when such

http://www.educ.pdf
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information is not available from other sources such as administrative records. Survey
sampling is a process in which researchers select a subset of the population, called a
sample, to understand the features of a target population. It should be distinguished
from a census, for which the goal is to enumerate all members of the population.

What makes survey sampling remarkable is that one can learn about a fairly large
population by interviewing a small fraction of it. In the Afghanistan data, a sample
of 2754 respondents was used to infer the experiences and attitudes of approximately
15 million civilians. In the United States, a sample of just about 1000 respondents is
typically used to infer the public opinion of more than 200 million adult citizens. In
this section, we explain what makes this seemingly impossible task possible and discuss
important methodological issues when collecting and analyzing survey data.

3.4.1 THE ROLE OF RANDOMIZATION
As in the randomized control trials (RCTs) discussed in chapter 2, randomization

plays an essential role in survey sampling. We focus on a class of sampling procedures
called probability sampling in which every unit of a target population has a known
nonzero probability of being selected. Consider the most basic probability sampling
procedure, called simple random sampling (SRS), which selects the predetermined
number of respondents to be interviewed from a target population, with each potential
respondent having an equal chance of being selected. The sampling is done without
replacement rather than with replacement so that once individuals are selected for
interview they are taken out of the sampling frame, which represents the complete list
of potential respondents. Therefore, sampling without replacement assigns at most one
interview per individual.

SRS produces a sample of respondents that are representative of the population. By
“representative,” we mean that if we repeat the procedure many times, the features of
each resulting sample would not be exactly the same as those of the population, but on
average (across all the samples) would be identical. For example, while onemay happen
to obtain, due to random chance, a sample of individuals who are slightly older than
those of the population, the age distribution over repeated samples would resemble
that of the population. Moreover, as in RCTs, probability sampling guarantees that the
characteristics of the sample, whether observed or unobserved, are on average identical
to the corresponding characteristics of the population. For this reason, we can infer
population characteristics using those of a representative sample obtained through
probability sampling procedures (see chapter 7 for more details).

Before probability sampling was invented, researchers often used a procedure called
quota sampling. Under this alternative sampling strategy, we specify fixed quotas of
certain respondents to be interviewed such that the resulting sample characteristics
resemble those of the population. For example, if 20% of the population has a college
degree, then researchers will set the maximum number of college graduates who will
be selected for interview to be 20% of the sample size. They will stop interviewing
those with college degrees once they reach that quota. The quota can be defined using
multiple variables. Often, the basic demographics such as age, gender, education, and
race are used to construct the categories for which the quota is specified. For example,
we may interview black females with a college degree and between 30 and 40 years old,
up to 5% of the sample size.
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The problem of quota sampling is similar to that of the observational studies
discussed in chapter 2. Even if a sample is representative of the population in terms of
some observed characteristics, which are used to define quotas, its unobserved features
may be quite different from those of the population. Just as individuals may self-
select to receive a treatment in an observational study, researchers may inadvertently
interview individuals who have characteristics systematically different from those who
are not interviewed. Probability sampling eliminates this potential sample selection bias
by making sure that the resulting sample is representative of the target population.

Simple random sampling (SRS) is the most basic form of probability sampling,
which avoids sample selection bias by randomly choosing units from a popula-
tion. Under SRS, the predetermined number of units is randomly selected from a
target population without replacement, where each unit has an equal probability
of being selected. The resulting sample is representative of the population in terms
of any observed and unobserved characteristics.

Quota sampling is believed to have caused one of the most well-known errors in the
history of newspapers. In the 1948 US presidential election, most major preelection
polls, including those conducted by Gallup and Roper, used quota sampling and
predicted that Thomas Dewey, then the governor of New York, would decisively
defeat Harry Truman, the incumbent, on Election Day. On election night, the Chicago
Tribune went ahead and sent the next morning’s newspaper to press, with the
erroneous headline “Dewey defeats Truman,” even before many East Coast states
reported their polling results. The election result, however, was the exact opposite.
Truman won by a margin of 5 percentage points in the national vote. Figure 3.1 shows
a well-known picture of Truman happily holding a copy of the Chicago Tribune with
the erroneous headline.

In order to apply SRS, we need a list of all individuals in the population to sample
from. As noted earlier, such a list is called a sampling frame. In practice, given a target
population, obtaining a sampling frame that enumerates all members of the population
is not necessarily straightforward. Lists of phone numbers, residential addresses, and
email addresses are often incomplete, missing a certain subset of the population who
have different characteristics. Random digit dialing is a popular technique for phone
surveys. However, the procedure may suffer from sample selection bias since some
people may not have a phone number and others may have multiple phone numbers.

Most in-person surveys employ a complex sampling procedure due to logistical
challenges. While an in-depth study of various survey sampling strategies is beyond
the scope of this book, we briefly discuss how the Afghanistan survey was conducted
in order to illustrate how survey sampling is done in practice. For the Afghanistan
survey, the researchers used a multistage cluster sampling procedure. In countries like
Afghanistan, it is difficult to obtain a sampling frame that contains most, let alone all,
of their citizens. However, comprehensive lists of administrative units such as districts
and villages are often readily available. In addition, since sending interviewers across
a large number of distant areas may be too costly, it is often necessary to sample
respondents within a reasonable number of subregions.
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Figure 3.1. Harry Truman, the Winner of the 1948 US Presidential Election, Holding a
Copy of the Chicago Tribune with the Erroneous Headline. Source: Copyright unknown,
Courtesy of Harry S. Truman Library.

Table 3.2. Afghanistan Village Data.

Variable Description

village.surveyed whether a village is sampled for survey
altitude altitude of the village
population population of the village

The multistage cluster sampling method proceeds in multiple stages by sampling
larger units first and then randomly selecting smaller units within each of the selected
larger units. In the Afghanistan survey, within each of the five provinces of interest,
the researchers sampled districts and then villages within each selected district. Within
each sampled village, interviewers selected a household in an approximately random
manner based on their location within the village, and finally administered a survey to
amale respondent aged 16 years or older, who was sampled using theKish gridmethod.
While the probability of selecting each individual in the population is known only
approximately, the method in theory should provide a roughly representative sample
of the target population.

We examine the representativeness of the randomly sampled villages in the
Afghanistan data. The data file afghan-village.csv contains the altitude and
population of each village (see table 3.2 for the names and descriptions of the variables).
For the population variable, it is customary to take the logarithmic transformation so
that the distribution does not look too skewed with a small number of extremely large
or small values. The logarithm of a positive number x is defined as the exponent of a
base value b, i.e., y = logb x ⇐⇒ x = by . For example, if the base value is 10, then the
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Figure 3.2. The Natural Logarithm. The left plot shows the natural logarithm loge x
where x is a positive number and e = 2.7182 . . . is Euler’s number. The remaining plots
display the histograms for the population of Afghan villages on the original scale (in
thousands) and the natural logarithmic scale. The population distribution is skewed
without the logarithmic transformation.

logarithm of 1000 is 3 = log10 1000. Similarly, the logarithm of 0.01 is−2 = log10 0.01.
The natural logarithm uses as its base value an important mathematical constant
e = 2.7182 . . . , which is defined as the limit of (1 + 1/n)n as n approaches infinity
and is sometimes called Euler’s number, so that y = loge x ⇐⇒ x = e y . The left-
hand plot of figure 3.2 depicts the natural logarithm function graphically. The figure
also shows that in the Afghanistan data, without the logarithmic transformation, the
distribution of the population is quite skewed because there exist a large number of
small villages and a small number of large villages.

The natural logarithmic transformation is often used to correct the skewness of
variables such as income and population that have a small number of observations
with extremely large or small positive values. The natural logarithm is the
logarithm with base e, which is a mathematical constant approximately equal to
2.7182, and defined as y = loge x. It is the inverse function of the exponential
function, so x = e y .

We use box plots to compare the distribution of these variables across sampled
and nonsampled villages. The variable village.surveyed indicates whether each
village in the data is (randomly) sampled and surveyed; 1 indicates yes and 0 no. As
explained above, we take the natural logarithmic transformation for the population
variable using the log() function. By default R uses e as its base, though it is
possible to specify a different base using the base argument in this function. Note
that the exponential function in R is given by exp(). In the boxplot() function,
we can use the names argument to specify a character vector of labels for each
group.
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## load village data

afghan.village <- read.csv("afghan-village.csv")

## box plots for altitude

boxplot(altitude ~ village.surveyed, data = afghan.village,

ylab = "Altitude (meters)", names = c("Nonsampled", "Sampled"))

## box plots for log population

boxplot(log(population) ~ village.surveyed, data = afghan.village,

ylab = "log population", names = c("Nonsampled", "Sampled"))
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The result shows that although there are some outliers, the distribution of these two
variables is largely similar between the sampled and nonsampled villages. So, at least
for these variables the sample appears to be representative of the population.

3.4.2 NONRESPONSE AND OTHER SOURCES OF BIAS
While probability sampling has attractive theoretical properties, in practice con-

ducting a survey faces many obstacles. As mentioned earlier, a sampling frame, which
enumerates all members of a target population, is difficult to obtain. In many cases, we
end up sampling from a list that may systematically diverge from the target population
in terms of some important characteristics. Even if a representative sampling frame
is available, interviewing randomly selected individuals may not be straightforward.
Failure to reach selected units is called unit nonresponse. For example, many individuals
refuse to participate in phone surveys. In the Afghanistan survey, the authors report
that 2754 out of 3097 potential respondents agreed to participate in the survey,
resulting in an 11% refusal rate. If those to whom researchers fail to administer the
survey are systematically different from those who participate in the survey, then bias
due to unit nonresponse arises.

In addition to unit nonresponse, most surveys also encounter the item nonresponse
problem when respondents refuse to answer certain survey questions. For example,
we saw in section 3.2 that in the Afghanistan survey, the income variable had a
nonresponse rate of approximately 5%. If those who refuse to answer are systematically
different from those who answer, then the resulting inference based only on the
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observed responses may be biased. In the Afghanistan data, for example, the item
nonresponse rates for the questions about civilian victimization by the Taliban and
the ISAF appear to vary across provinces.

tapply(is.na(afghan$violent.exp.taliban), afghan$province, mean)

## Helmand Khost Kunar Logar Uruzgan

## 0.030409357 0.006349206 0.000000000 0.000000000 0.062015504

tapply(is.na(afghan$violent.exp.ISAF), afghan$province, mean)

## Helmand Khost Kunar Logar Uruzgan

## 0.016374269 0.004761905 0.000000000 0.000000000 0.020671835

We observe that in Helmand and Uruzgan, which are known to be the most
violent provinces (see section 3.3.3), the item nonresponse rates are the highest. These
differences are especially large for the question about civilian victimization by the
Taliban. The evidence presented here suggests that although the item nonresponse rate
in this survey is relatively low, certain systematic factors appear to affect its magnitude.
While they are beyond the scope of this book, there exist many statistical methods of
reducing the bias due to unit and item nonresponse.

There are two types of nonresponse in survey research. Unit nonresponse refers
to a case in which a potential respondent refuses to participate in a survey. Item
nonresponse occurs when a respondent who agreed to participate refuses to
answer a particular question. Both nonresponses can result in biased inferences
if those who respond to a question are systematically different from those who
do not.

Beyond item and unit nonresponse, another potential source of bias is misreport-
ing. Respondents may simply lie because they may not want interviewers to find
out their true answers. In particular, social desirability bias refers to the problem
where respondents choose an answer that is seen as socially desirable regardless
of what their truthful answer is. For example, it is well known that in advanced
democracies voters tend to report they participated in an election even when they
actually did not, because abstention is socially undesirable. Similarly, social desirability
bias makes it difficult to accurately measure sensitive behavior and opinions such
as corruption, illegal behavior, racial prejudice, and sexual activity. For this reason,
some scholars remain skeptical of self-reports as measurement for social science
research.

One main goal of the Afghanistan study was to measure the extent to which
Afghan citizens support foreign forces. To defeat local insurgent forces and win the
wars in Afghanistan and Iraq, many Western policy makers believed that “winning
the hearts and minds” of a civilian population was essential. Unfortunately, directly
asking whether citizens are supportive of foreign forces and insurgents in rural Afghan
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villages can put interviewers and respondents at risk because interviews are often
conducted in public. The Institutional Review Board, which evaluates the ethical issues
and potential risks of research projects involving human subjects, may not approve
direct questioning of sensitive questions in a civil war setting. Even if possible, direct
questioning may lead to nonresponse and misreporting.

To address this problem, the authors of the original study implemented a survey
methodology called item count technique or list experiment. The idea is to use aggrega-
tion to provide a certain level of anonymity to respondents. The method first randomly
divides the sample into two comparable groups. In the “control” group, the following
question was asked.

I’m going to read you a list with the names of different groups and individuals
on it. After I read the entire list, I’d like you to tell me how many of these groups
and individuals you broadly support, meaning that you generally agree with the
goals and policies of the group or individual. Please don’t tell me which ones you
generally agree with; only tell me how many groups or individuals you broadly
support.

Karzai Government; National Solidarity Program; Local Farmers

The “treatment” group received the same question except with an additional sensitive
item:

Karzai Government; National Solidarity Program; Local Farmers; Foreign
Forces

Here, the last item, Foreign Forces, which refers to the ISAF, is the sensitive item. The
item count technique does not require respondents to answer each item separately.
Instead, they give an aggregate count of items. Since the two conditions are comparable
apart from the sensitive item, the difference in the average number of items a
respondent reports will be an estimate of the proportion of those who support the
ISAF. The list.group variable indicates which group each respondent is randomly
assigned to, where for the two relevant groups the variable equals ISAF and control.
The outcome variable is list.response, which represents the item count reported
by each respondent.

mean(afghan$list.response[afghan$list.group == "ISAF"])-

mean(afghan$list.response[afghan$list.group == "control"])

## [1] 0.04901961

The item count technique estimates that approximately 5% of Afghan citizens
support the ISAF, implying that the ISAF is unpopular among Afghans.

The weakness of the item count technique, however, is that in the “treatment” group,
answering either “0” or “4” in this case reveals one’s honest answer. These potential
problems are called floor effects and ceiling effects, respectively. In the Afghan data, we
see clear evidence of this problem when the Taliban, instead of the ISAF, is added to
the list as the sensitive item.



96 Chapter 3: Measurement

table(response = afghan$list.response, group = afghan$list.group)

## group

## response control ISAF taliban

## 0 188 174 0

## 1 265 278 433

## 2 265 260 287

## 3 200 182 198

## 4 0 24 0

Remarkably, no respondents in the taliban group answered either “0” or “4,”
perhaps because they do not want to be identified as either supportive or critical of
the Taliban.

As we can see, measuring the truthful responses to sensitive questions is a challeng-
ing task. In addition to the item count technique, social scientists have used a variety
of survey methodologies in an effort to overcome this problem. Another popular
methodology is called the randomized response technique in which researchers use
randomization to provide anonymity to respondents. For example, respondents are
asked to roll a six-sided die in private without revealing the outcome. They are then
asked to answer yes if the outcome of rolling the die was 1, no if 6, and give an honest
answer if the outcomewas between 2 and 5. Therefore, unlike the item count technique,
the secrecy of individual responses is completely protected. Since the probability of
each outcome is known, the researchers can estimate the aggregate proportion of
honest responses out of those who responded with a yes answer even though they have
no way of knowing the truthfulness of individual answers with certainty.

3.5 Measuring Political Polarization

Social scientists often devisemeasurement models to summarize and understand the
behaviors, attitudes, and unobservable characteristics of human beings. A prominent
example is the question of how to quantitatively characterize the ideology of political
actors such as legislators and judges from their behavior. Of course, we do not directly
observe the extent to which an individual is liberal or conservative. While ideology is
perhaps a purely artificial concept, it is nonetheless a useful way to describe the political
orientation of various individuals. Over the past several decades, social scientists have
attempted to infer the ideology of politicians from their roll call votes. In each year,
for example, legislators in the US Congress vote on hundreds of bills. Using this voting
record, which is publicly available, researchers have tried to characterize the political
ideology of each member of Congress and how the overall ideological orientation in
the US Congress has changed over time.2

A simple measurement model of spatial voting can relate a legislator’s ideology
to their votes. Figure 3.3 illustrates this model, which characterizes the ideology

2 This section is based on Nolan McCarty, Keith T. Poole, and Howard Rosenthal (2006) Polarized America:
The Dance of Ideology and Unequal Riches. MIT Press.
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Figure 3.3. An Illustration for the Spatial Voting Model of Legislative Ideology.

or “ideal point” of legislators by two dimensions—economic and racial liberalism/
conservatism—identified by researchers as the main ideological characteristics of
postwar congressional politics. Researchers have found that much of congressional roll
call voting can be explained by the economic liberalism/conservatism dimension while
the racial liberalism/conservatism dimension is less pronounced. Under this model,
the legislator, whose ideal point is indicated by a cross mark in the figure, is more likely
to vote against the proposal (solid triangle) whenever their ideal point is closer to the
status quo (solid circle) than to the proposal location. The outcomes of congressional
votes on controversial proposals reveal much about legislators’ ideologies. On the other
hand, a unanimously accepted or rejected proposal provides no information about
legislators’ ideological orientations.

A similar model is used in educational testing literature. Scholars have developed
a class of statistical methods called item response theory for standardized tests such
as the SAT and Graduate Record Examination (GRE). In this context, legislators and
legislative proposals are replaced with student examinees and exam questions. Instead
of ideal points, the goal is to measure students’ abilities. The model also estimates the
difficulty of each question. This helps the researchers choose good exam questions,
which are neither too difficult nor too easy, so that only competent students will be
able to provide a correct answer. These examples illustrate the importance of latent
(i.e., unobserved) measurements in social science research.

3.6 Summarizing Bivariate Relationships

In this section, we introduce several ways to summarize the relationship between
two variables. We analyze the estimates of legislators’ ideal points, known as DW-
NOMINATE scores, where more negative (positive) scores are increasingly liberal
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Table 3.3. Legislative Ideal Points Data.

Variable Description

name name of the congressional representative
state state of the congressional representative
district district number of the congressional representative
party party of the congressional representative
congress congressional session number
dwnom1 DW-NOMINATE score (first dimension)
dwnom2 DW-NOMINATE score (second dimension)

(conservative). The CSV file congress.csv contains the estimated ideal points of
all legislators who served in the House of Representatives from the 80th (1947–1948)
to the 112th (2011–2012) Congresses. Table 3.3 presents the names and descriptions of
the variables in the data set.

3.6.1 SCATTER PLOT
Using the plot() function, we create a scatter plot, which plots one variable

against another in order to visualize their relationship. The syntax for this function
is plot(x, y), where x and y are vectors of horizontal and vertical coordinates,
respectively. Here, we plot the DW-NOMINATE first dimension score (dwnom1
variable) on the horizontal axis, which represents economic liberalism/conservatism,
against its second dimension score on the vertical axis (dwnom2 variable), which
represents racial liberalism/conservatism. We will start by creating scatter plots for the
80th and 112th Congresses. We begin by subsetting the relevant part of the data.

congress <- read.csv("congress.csv")

## subset the data by party

rep <- subset(congress, subset = (party == "Republican"))

dem <- congress[congress$party == "Democrat", ] # another way to subset

## 80th and 112th Congress

rep80 <- subset(rep, subset = (congress == 80))

dem80 <- subset(dem, subset = (congress == 80))

rep112 <- subset(rep, subset = (congress == 112))

dem112 <- subset(dem, subset = (congress == 112))

We will be creating multiple scatter plots with the same set of axis labels and axis
limits. To avoid repetition, we store them as objects for later use.

## preparing the labels and axis limits to avoid repetition

xlab <- "Economic liberalism/conservatism"

ylab <- "Racial liberalism/conservatism"

lim <- c(-1.5, 1.5)



3.6 Summarizing Bivariate Relationships 99

Finally, using this axis information, we create scatter plots of ideal points for
the 80th and 112th Congresses. Note that the pch argument in the plot() and
points() functions can be used to specify different plotting symbols for the two
parties. In the current example, pch = 16 graphs solid triangles for Republicans while
pch = 17 graphs solid circles for Democrats. More options are available and can be
viewed by typing example(points) into R console.

## scatter plot for the 80th Congress

plot(dem80$dwnom1, dem80$dwnom2, pch = 16, col = "blue",

xlim = lim, ylim = lim, xlab = xlab, ylab = ylab,

main = "80th Congress") # Democrats

points(rep80$dwnom1, rep80$dwnom2, pch = 17, col = "red") # Republicans

text(-0.75, 1, "Democrats")

text(1, -1, "Republicans")

## scatter plot for the 112th Congress

plot(dem112$dwnom1, dem112$dwnom2, pch = 16, col = "blue",

xlim = lim, ylim = lim, xlab = xlab, ylab = ylab,

main = "112th Congress")

points(rep112$dwnom1, rep112$dwnom2, pch = 17, col="red")

The plots below use solid gray triangles instead of red triangles for Republicans. See
page C1 for the full-color version.
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The plots show that in the 112th Congress (as opposed to the 80th Congress),
the racial liberalism/conservatism dimension is no longer important in explaining
the ideological difference between Democrats and Republicans. Instead, the economic
dimension appears to be a dominant explanation for the partisan difference, and the
difference between Democrats and Republicans in the racial dimension is much less
pronounced.

Next, we compute the median legislator, based on the DW-NOMINATE first
dimension score, separately for the Democratic and Republican Parties and for each
Congress. These party median ideal points represent the center of each party in the



100 Chapter 3: Measurement

economic liberalism/conservatism dimension. We can do this easily by using the
tapply() function.

## party median for each congress

dem.median <- tapply(dem$dwnom1, dem$congress, median)

rep.median <- tapply(rep$dwnom1, rep$congress, median)

Finally, using the plot() function, we create a time-series plot where each party
median is displayed for each Congress. We set the type argument to "l" in order to
draw a line connecting the median points over time. This plot enables us to visualize
how the party medians have changed over time.We will use the term of Congress as the
horizontal axis. This information is available as the name of the dem.median vector.

## Democrats

plot(names(dem.median), dem.median, col = "blue", type = "l",

xlim = c(80, 115), ylim = c(-1, 1), xlab = "Congress",

ylab = "DW-NOMINATE score (first dimension)")

## add Republicans

lines(names(rep.median), rep.median, col = "red")

text(110, -0.6, "Democratic\n Party")

text(110, 0.85, "Republican\n Party")

The plot below uses a gray line instead of a red line for Republicans. See page C1 for
the full-color version.
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Note that the syntax \n used in the text() function indicates a change to a new
line. The plot clearly shows that the ideological centers of the two parties diverge over
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Figure 3.4. Gini Coefficient and Lorenz Curve.

time. The Democratic Party has become more liberal while the Republican Party has
increasingly moved in a conservative direction in recent years. Many scholars refer to
this phenomenon as political polarization.

A scatter plot graphically compares two variables measured on the same set of
units by plotting the value of one variable against that of the other for each unit.

3.6.2 CORRELATION
What is the cause of political polarization? This is a difficult question to answer,

and is the subject of much scholarly debate. However, it has been pointed out
that rising income inequality may be responsible for the widening partisan gap. To
measure income inequality, we use the Gini coefficient (Gini index), which is best
understood graphically. Figure 3.4 illustrates the idea. The horizontal axis represents
the cumulative share of people sorted from the lowest to highest income. The vertical
axis, on the other hand, plots the cumulative share of income held by those whose
income is equal to or less than that of a person at a given income percentile. The Lorenz
curve connects these two statistics. If everyone earns exactly the same income, then the
Lorenz curve will be the same as the 45-degree line because x% of the population will
hold exactly x% of national income regardless of the value of x. Let’s call this the line
of equality. However, if low income people earn a lot less than high income people, the
Lorenz curve will become flatter at the beginning and then sharply increase at the end.
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Table 3.4. US Gini Coefficient Data.

Variable Description

year year
gini US Gini coefficient

Now, we can define the Gini coefficient as the area between the line of equality and
the Lorenz curve divided by the area under the line of equality. In terms of figure 3.4,

Gini coefficient = area between the line of equality and the Lorenz curve

area under the line of equality

= area A in figure 3.4

area A + area B in figure 3.4
.

The formula implies that the larger (smaller) area A is, the higher (lower) the Gini
coefficient, meaning more (less) inequality. In a perfectly equal society, the Gini
coefficient is 0. In contrast, a society where one person possesses all the wealth has
a Gini coefficient of 1.

The Gini coefficient (Gini index) measures the degree of income equality and
inequality in a given society. It ranges from 0 (everyone has the same amount of
wealth) to 1 (one person possesses all the wealth).

To examine the relationship between political polarization and income inequality,
we create two time-series plots side by side. The first plot shows the partisan gap,
i.e., the difference between the two party medians, over time. The second time-
series plot displays the Gini coefficient during the same time period. The CSV data
file, USGini.csv, contains the Gini coefficient from 1947 to 2013 (see table 3.4).
We notice that both political polarization and income inequality have been steadily
increasing in the United States.

## Gini coefficient data

gini <- read.csv("USGini.csv")

## time-series plot for partisan difference

plot(seq(from = 1947.5, to = 2011.5, by = 2),

rep.median - dem.median, xlab = "Year",

ylab = "Republican median -\n Democratic median",

main = "Political polarization")

## time-series plot for Gini coefficient

plot(gini$year, gini$gini, ylim = c(0.35, 0.45), xlab = "Year",

ylab = "Gini coefficient", main = "Income inequality")
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However, in chapter 2, we learned that association does not necessarily imply
causation and hence we should not necessarily interpret this upwards trend as evidence
for income inequality causing polarization. For example, life expectancy has also
constantly increased during this time period, and yet this does not imply that longer
life expectancy caused political polarization or vice versa.

Correlation (also referred to as a correlation coefficient) is one of the most frequently
used statistics to summarize bivariate relationships. The measure represents how, on
average, two variables move together relative to their respective means. Before defining
correlation, we need to introduce the z-score, which represents the number of standard
deviations an observation is above or below the mean. Specifically, the z-score of the
i th observation of variable x is defined as

z-score of xi = xi − mean of x
standard deviation of x

. (3.1)

For example, if the z-score of a particular observation equals 1.5, the observation is 1.5
standard deviations above the mean. The z-score standardizes a variable so its unit of
measurement no longer matters. More formally, the z-score of axi + b, where a and b
are constants (a is non-zero), is identical to the z-score of xi . Simple algebra can show
this property:

z-score of (axi + b) = (axi + b) − mean of (ax + b)
standard deviation of (ax + b)

= a × (xi − mean of x)
a × standard deviation of x

= z-score of xi ,
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where the first equality follows from the definition of z-score in equation (3.1) and
the second equality is based on the definitions of mean and standard deviation (see
equation (2.4)). The constant b can be dropped in the above equations because its mean
equals b itself.

The z-score of the i th observation of a variable xmeasures the number of standard
deviations an observation is above or below the mean. It is defined as

z-score of xi = xi − x̄
Sx

,

where x̄ and Sx are the mean and standard deviation of x, respectively. The
z-score, as a measure of deviation from the mean, is not sensitive to how the
variable is scaled and/or shifted.

Now, we can define the correlation between two variables x and y, measured
for the same set of n observations, as the average products of z-scores for the two
variables:

correlation(x, y) = 1
n

n∑

i=1

(z-score of xi × z-score of yi ) . (3.2)

As in the case of standard deviation (see section 2.6.2), the denominator of the
correlation is often n − 1 rather than n. However, this difference should not affect
one’s conclusion so long as the sample size is sufficiently large. Within the summation,
each z-score measures the deviation of the corresponding observation from its mean
in terms of standard deviation. Suppose that when one variable is above its mean, the
other variable is also likely to be greater than its own mean. Then, the correlation
is likely to be positive because the signs of the standardized units tend to agree with
each other. On the other hand, suppose that when one variable is above its mean, the
other variable is likely to be less than its own mean. Then, the correlation is likely to
be negative. In the current example, a positive correlation means that in years when
income inequality is above its over-time mean, political polarization is also likely to be
higher than its over-time mean.

Recall that z-scores are not sensitive to what units are used to measure a variable.
Because it is based on z-scores, correlation also remains identical even if different units
are used for measurement. For example, the correlation does not change even if one
measures income in thousands of dollars instead of dollars. Indeed, one can even use
a different currency. This is convenient because, for example, the relationship between
income and education should not change depending on what scales we use to measure
income. As another consequence of standardization, correlation varies only between
−1 and 1. This allows us to compare the strengths and weaknesses of association
between different pairs of variables.
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Correlation (correlation coefficient) measures the degree to which two variables
are associated with each other. It is defined as

correlation of x and y = 1
n

n∑

i=1

(
xi − x̄
Sx

× yi − ȳ
Sy

)

or
1

n − 1

n∑

i=1

(
xi − x̄
Sx

× yi − ȳ
Sy

)
,

where x̄ and ȳ are the means and Sx and Sy are the standard deviations for
variables x and y, respectively. Correlation ranges from −1 to 1 and is not
sensitive to how a variable is scaled and/or shifted.

In R, the correlation can be calculated using the cor() function. For example,
we can now calculate the correlation between the Gini coefficient and the measure of
political polarization. To do this, since each US congressional session lasts two years,
we take the Gini coefficient for the second year of each session.

cor(gini$gini[seq(from = 2, to = nrow(gini), by = 2)],

rep.median - dem.median)

## [1] 0.9418128

We find that the correlation is positive and quite high, indicating that political
polarization and income inequality move in a similar direction. As we have already
emphasized, this correlation alone does not imply causality. Many variables have an
upwards trend during this time, leading to a high positive correlation among them.

3.6.3 QUANTILE–QUANTILE PLOT
Finally, in some cases, we are interested in comparing the entire distributions

of two variables rather than just the mean or median. One way to conduct such a
comparison is to simply plot two histograms side-by-side. As an example, we compare
the distribution of ideal points on the racial liberalism/conservatism dimension in the
112th Congress. When comparing across multiple plots, it is important to use the same
scales for the horizontal and vertical axes for all plots to facilitate the comparison.

hist(dem112$dwnom2, freq = FALSE, main = "Democrats",

xlim = c(-1.5, 1.5), ylim = c(0, 1.75),

xlab = "Racial liberalism/conservatism dimension")

hist(rep112$dwnom2, freq = FALSE, main = "Republicans",

xlim = c(-1.5, 1.5), ylim = c(0, 1.75),

xlab = "Racial liberalism/conservatism dimension")
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We observe that the two distributions are similar, though the distribution for
Democrats appears to have a longer upper tail (i.e., the distribution extends further
to the right) than that for Republicans. In addition, the Republicans’ ideological
positions seem to have a greater concentration towards the center than those of the
Democrats.

A more direct way of comparing two distributions is a quantile–quantile plot or
Q–Q plot. The Q–Q plot is based on quantiles, defined in section 2.6.1. It is a scatter
plot of quantiles where each point represents the same quantile. For example, the
median, upper quartile, and lower quartile of one sample will be plotted against the
corresponding quantiles of the other sample. If two distributions are identical, then all
quantiles have the same values. In this case, the Q–Q plot will result in the 45-degree
line. Points above the 45-degree line indicate that a variable plotted on the vertical
axis has a greater value at the corresponding quantile than a variable on the horizontal
axis. In contrast, points below a 45-degree line imply the opposite relationship. This
implies, for example, that if all points are above the 45-degree line, the variable
on the vertical axis takes a greater value in every quantile than the variable on the
horizontal axis.

Another useful feature of the Q–Q plot is that we can check the relative disper-
sion of two distributions. If the points in a Q–Q plot form a flatter line than the
45-degree line, they indicate that the distribution plotted on the horizontal axis is
more dispersed than that on the vertical axis. In contrast, if the line has a steeper
slope than 45 degrees, then the distribution plotted on the vertical line has a greater
spread. The qqplot() function generates this plot by specifying the arguments
x and y.

qqplot(dem112$dwnom2, rep112$dwnom2, xlab = "Democrats",

ylab = "Republicans", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5),

main = "Racial liberalism/conservatism dimension")

abline(0, 1) # 45-degree line
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In this Q–Q plot, the horizontal and vertical axes represent the racial dimension
for Democrats and Republicans, respectively. The fact that the points representing
lower quantiles appear above the 45-degree line indicate that liberal Republicans
are more conservative than liberal Democrats. This is because these quantiles have
greater values (i.e., more conservative) for Republicans than the corresponding
quantiles for Democrats. In contrast, the points representing upper quantiles are
located below the 45-degree line. That is, at the highest quantiles, i.e., the con-
servative ones, the Democrats score higher and so more conservatively than the
Republicans. Thus, conservative Democrats are more conservative than conservative
Republicans. Conservative Republicans would be more conservative than conservative
Democrats if all the points for the upper quantiles were above the 45-degree line.
Finally, the line connecting the points is flatter than the 45-degree line, indicating
that the distribution of ideological positions is more dispersed for Democrats than
for Republicans.

The quantile–quantile plot or Q–Q plot is a scatter plot of quantiles. It plots
the value of each quantile for one variable against the value of the corresponding
quantile for another variable. If the distributions of the two variables are identical,
all points of the Q–Q plot lie on the 45-degree line. If the points form a line whose
slope is steeper than 45 degrees, the distribution plotted on the vertical axis is
more dispersed than the distribution on the horizontal axis. If the slope is less than
45 degrees, then the distribution on the vertical axis has less dispersion.
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3.7 Clustering

In the previous analysis, the scatter plot made it visually clear that the 112th
Congress had two ideologically distinct groups, Democrats and Republicans. But, are
there any clusters of ideologically similar legislators within each party? Is there a well-
defined procedure that can uncover groups of similar observations? We consider one
of the most basic clustering algorithms, called k-means. Before we describe the k-means
algorithm, we briefly introduce two new important R objects: matrix and list. These
objects will be used when we implement the k-means algorithm in R.

3.7.1 MATRIX IN R
Although both the matrix and data frame objects are rectangular arrays and have

many similarities, there are critical differences. Most importantly, a data frame can
take different types of variables (e.g., numeric, factor, character) whereas a matrix in
principle takes only numeric values (though it also can accommodate logical and other
special values under certain circumstances). While one can extract variables from a
data frame object using the $ operator, in general the entries of a matrix need to be
extracted by using square brackets [,] whose first and second elements, separated by
a comma, indicate the rows and columns of interest, respectively. Although we do not
exploit it in this book, a matrix is useful for linear algebra operations and is generally
more computationally efficient than a data frame.

To create a matrix object, we can use the matrix() function by specifying
the size of the matrix via the nrow (number of rows) and ncol (number of
columns) arguments and indicating whether the matrix should be filled with the input
data by row (byrow = TRUE) or column (byrow = FALSE). Moreover, adding
labels to rows and columns can be done by the rownames() and colnames()
functions.

## 3x4 matrix filled by row; first argument takes actual entries

x <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

rownames(x) <- c("a", "b", "c")

colnames(x) <- c("d", "e", "f", "g")

dim(x) # dimension

## [1] 3 4

x

## d e f g

## a 1 2 3 4

## b 5 6 7 8

## c 9 10 11 12

If one coerces a data frame object into a matrix using the as.matrix() function,
some features of the data frame object, such as variable types, will get lost. In
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the following example, we illustrate the fact that a data frame can take different
data types such as character and numeric, but a matrix cannot accommodate them.
Instead, the as.matrix() function converts variables of different types to a single
type, character in this case.

## data frame can take different data types

y <- data.frame(y1 = as.factor(c("a", "b", "c")), y2 = c(0.1, 0.2, 0.3))

class(y$y1)

## [1] "factor"

class(y$y2)

## [1] "numeric"

## as.matrix() converts both variables to character

z <- as.matrix(y)

z

## y1 y2

## [1,] "a" "0.1"

## [2,] "b" "0.2"

## [3,] "c" "0.3"

Finally, some useful operations on amatrix include colSums() and colMeans(),
which calculate the column sums and means, respectively. The same operations can be
applied to rows via the rowSums() and rowMeans() functions.

## column sums

colSums(x)

## d e f g

## 15 18 21 24

## row means

rowMeans(x)

## a b c

## 2.5 6.5 10.5

More generally, we can use the apply() function to apply any function to amargin,
meaning a row or a column, of a matrix. This function takes three main arguments: the
first or X argument is a matrix, the second or MARGIN argument specifies a dimension
over which we wish to apply a function (1 represents rows while 2 represents columns),
and the third or FUN argument names a function. We provide three examples. The first
two examples are equivalent to the colSums() and rowMeans() shown above. The
last example computes the standard deviation of each row.
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## column sums

apply(x, 2, sum)

## d e f g

## 15 18 21 24

## row means

apply(x, 1, mean)

## a b c

## 2.5 6.5 10.5

## standard deviation for each row

apply(x, 1, sd)

## a b c

## 1.290994 1.290994 1.290994

3.7.2 LIST IN R
We now turn to another important object class in R, called a list. The list object is

useful because it can store different types of objects as its elements. For example, a list
can take numeric and character vectors of different lengths. In contrast, a data frame
assumes those vectors to be of the same length. In fact, a list can even contain multiple
data frames of different sizes as its elements. Therefore, a list is a very general class of
objects.

Each element of a list comes with a name and can be extracted using the $ operator
(just like a variable in a data frame). It is also possible to extract an element using
double square brackets, [[ ]], with an integer or its element name indicating the
element to be extracted. Below is a simple illustrative example of a list, which contains
an integer vector of length 10 (y1), a character vector of length 3 (y2), and a data
frame with two variables and three observations (y3). To create a list, we use the
list() function and specify its elements by using their names as arguments.

## create a list

x <- list(y1 = 1:10, y2 = c("hi", "hello", "hey"),

y3 = data.frame(z1 = 1:3, z2 = c("good", "bad", "ugly")))

## three ways of extracting elements from a list

x$y1 # first element

## [1] 1 2 3 4 5 6 7 8 9 10

x[[2]] # second element

## [1] "hi" "hello" "hey"
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x[["y3"]] # third element

## z1 z2

## 1 1 good

## 2 2 bad

## 3 3 ugly

Some of the functions we introduced can be applied to the list object. They include
the names() (to extract the names of elements) and length() (to obtain the number
of elements) functions.

names(x) # names of all elements

## [1] "y1" "y2" "y3"

length(x) # number of elements

## [1] 3

3.7.3 THE k-MEANS ALGORITHM
Now that we are familiar with matrices and lists, we can use them to apply the

k-means algorithm. The k-means algorithm is an iterative algorithm in which a set
of operations are repeatedly performed until a noticeable difference in results is no
longer produced. The goal of the algorithm is to split the data into k similar groups
where each group is associated with its centroid, which is equal to the within-group
mean. This is done by first assigning each observation to its closest cluster and then
computing the centroid of each cluster based on this new cluster assignment. These
two steps are iterated until the cluster assignment no longer changes. The algorithm is
defined as follows.

The k-means algorithm produces the prespecified number of clusters k and
consists of the following steps:

Step 1: Choose the initial centroids of k clusters.

Step 2: Given the centroids, assign each observation to a cluster whose
centroid is the closest (in terms of Euclidean distance) to that
observation.

Step 3: Choose the new centroid of each cluster whose coordinate equals
the within-cluster mean of the corresponding variable.

Step 4: Repeat Step 2 and 3 until cluster assignments no longer change.

Note that the researchers must choose the number of clusters k and the initial
centroid of each cluster. In R, the initial locations of centroids are randomly selected,
unless otherwise specified.
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It is typically a good idea to standardize the inputs before applying the k-means
algorithm. Doing so brings all variables to the same scale so that the clustering result
does not depend on how each variable is measured. This is done by computing the
z-score introduced earlier (see equation (3.1)). Recall that we compute the z-score of
a variable by subtracting the mean from it (called centering) and then dividing it by
the standard deviation (called scaling). In R, we can standardize a variable or a set of
variables using the scale() function, which takes either a vector of a single variable
or a matrix of multiple variables.

Going back to our study of partisanship, we apply the k-means clustering algo-
rithm separately to the DW-NOMINATE scores for the 80th and 112th Congresses.
We choose k= 2 and k= 4, producing 2 and 4 clusters, respectively. The function
kmeans() implements the k-means algorithm in R. The function has various argu-
ments, but the first argument x takes a matrix of observations to which one applies
the k-means algorithm. For our application, this matrix has two columns, representing
the first and second dimensions of DW-NOMINATE scores, and the number of rows
equals the number of legislators in each Congress. We use the cbind() (or “column
bind”) function to combine two variables by columns in order to create this matrix. As
a side note, the rbind() (or “row bind”) function allows one to bind two vectors or
matrices by rows. We do not standardize the input variables in this application since
the DW-NOMINATE scores are already scaled in a substantively meaningful manner.

dwnom80 <- cbind(congress$dwnom1[congress$congress == 80],

congress$dwnom2[congress$congress == 80])

dwnom112 <- cbind(congress$dwnom1[congress$congress == 112],

congress$dwnom2[congress$congress == 112])

The main arguments of the kmeans() function include centers (the number of
clusters), iter.max (the maximum number of iterations), and nstart (the number
of randomly chosen initial centroids). It is recommended that the nstart argument
is specified so that the algorithm is run several times with different starting values
(the kmeans() function reports the best results). We begin by fitting the k-means
algorithm with two clusters and five randomly selected starting values.

## k-means with 2 clusters

k80two.out <- kmeans(dwnom80, centers = 2, nstart = 5)

k112two.out <- kmeans(dwnom112, centers = 2, nstart = 5)

The output objects, k80two.out and k112two.out, are lists, which contain var-
ious elements regarding the results of the application of the k-means algorithm. They
include iter (an integer representing the number of iterations until convergence,
which is achieved when the cluster assignments no longer change), cluster (a vector
of the resulting cluster membership), and centers (a matrix of cluster centroids).

## elements of a list

names(k80two.out)

## [1] "cluster" "centers" "totss"
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## [4] "withinss" "tot.withinss" "betweenss"

## [7] "size" "iter" "ifault"

As explained in section 3.7.2, the elements within each list can be accessed using $
like we access a variable in a data frame object. In both cases, the algorithm converged
in just 1 iteration, which can be checked by examining the iter element of the output
list object. The default maximum number of iterations is 10. If convergence is not
achieved, the iter.max argument needs to be specified as a number greater than 10.

We now examine the final centroids of the resulting clusters using a 2-cluster model.
Each output row shows a cluster with the horizontal and vertical coordinates of its
centroid in the first and second columns, respectively.

## final centroids

k80two.out$centers

## [,1] [,2]

## 1 0.14681029 -0.3389293

## 2 -0.04843704 0.7827259

k112two.out$centers

## [,1] [,2]

## 1 -0.3912687 0.03260696

## 2 0.6776736 0.09061157

We next compute the numbers of Democratic and Republican legislators who
belong to each cluster by creating a cross tabulation of party and cluster label variables.

## number of observations for each cluster by party

table(party = congress$party[congress$congress == 80],

cluster = k80two.out$cluster)

## cluster

## party 1 2

## Democrat 62 132

## Other 2 0

## Republican 247 3

table(party = congress$party[congress$congress == 112],

cluster = k112two.out$cluster)

## cluster

## party 1 2

## Democrat 200 0

## Other 0 0

## Republican 1 242
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We find that for the 112th Congress, the k-means algorithm with 2 clusters
produces 1 cluster containing only Democrats and the other consisting only of
Republicans. While we chose the number of clusters to be 2 in this case, the algorithm
discovers that these 2 clusters perfectly align on partisanship. In contrast, for the 80th
Congress, one of the clusters contains a significant number of Democrats as well as
Republicans. This is consistent with the fact that political polarization has worsened
over time.

Next, we apply the k-means algorithm with 4 clusters and visualize the results. We
begin by fitting the 4-cluster model to the 80th and 112th Congresses.

## k-means with 4 clusters

k80four.out <- kmeans(dwnom80, centers = 4, nstart = 5)

k112four.out <- kmeans(dwnom112, centers = 4, nstart = 5)

To visualize the results, we use the plot() function to create a scatter plot.
The following syntax assigns different colors to observations that belong to different
clusters. The centroid of each cluster is indicated by an asterisk.

## plotting the results using the labels and limits defined earlier

plot(dwnom80, col = k80four.out$cluster + 1, xlab = xlab, ylab = ylab,

xlim = lim, ylim = lim, main = "80th Congress")

## plotting the centroids

points(k80four.out$centers, pch = 8, cex = 2)

## 112th Congress

plot(dwnom112, col = k112four.out$cluster + 1, xlab = xlab, ylab = ylab,

xlim = lim, ylim = lim, main = "112th Congress")

points(k112four.out$centers, pch = 8, cex = 2)

For the full-color version of the plots, see page C2.
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The cex argument given in the points() function controls the font size so that
the centroid of each cluster is clearly visible. In addition, the pch argument specifies
a certain symbol for plotting. Finally, we specify a vector of integer values, rather than
actual color names, for the col argument so that each integer value is used for the
corresponding cluster. We add 1 to the cluster labels so that we do not use black, the
color of the cluster centroids, for the observations belonging to one of the clusters.
The palette() function displays the exact correspondence between the color names
and integer values (see section 5.3.3 for more details on the use of color in R).

palette()

## [1] "black" "red" "green3" "blue" "cyan"

## [6] "magenta" "yellow" "gray"

The results show that the 4-cluster model splits the Democrats into 2 clusters and
the Republicans into 2 clusters.Within each party, the division between the 2 clusters is
clearest among the Democrats in the 80th Congress. For both parties, the within-party
division is along the racial dimension. In contrast, the economic dimension dominates
the difference between the two parties.

Clustering algorithms such as the k-means algorithm represent examples of unsu-
pervised learning methods. Unlike in supervised learning, there is no outcome variable.
Instead, the goal of unsupervised learning is to discover the hidden structures in data.
The difficulty of unsupervised learning is that there is no clear measure of success and
failure. In the absence of outcome data, it is difficult to know whether these clustering
algorithms are producing the “correct” results. For this reason, human judgment is
often required to make sure that the findings produced by clustering algorithms are
reasonable.

3.8 Summary

This chapter focused on the issue of measurement. We discussed survey sampling
as a principled and efficient way to infer the characteristics of a potentially large
population from a small number of randomly sampled units without enumerating all
units in the population. In chapter 2, we learned about the randomization of treatment
assignment, which ensures that the treatment and control groups are equal on average
in all aspects but the receipt of treatment. In survey sampling, we used the random
sampling of units to make the sample representative of a target population. This allows
researchers to infer population characteristics from the sample obtained from random
sampling.

While random sampling is an effective technique, there are several complications
in practice. First, while random sampling requires a complete list of potential units
to be sampled, it is often difficult to obtain such a sampling frame. Second, due to
cost and logistical constraints, researchers are forced to use complex random sampling
techniques. Third, surveys typically lead to both unit and item nonresponses, which,
if occurring nonrandomly, threaten the validity of inference. In recent years, the
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nonresponse rate of phone surveys has dramatically increased. As a result, many
polling firms are starting to use cheap Internet surveys through platforms like
Qualtrics, even though many such surveys are not based on probability sampling.
Beyond nonresponse problems, sensitive questions in surveys often result in social
desirability bias in which respondents may falsify their answers and provide socially
acceptable answers.

Furthermore, social scientists often face the question of how to measure latent
concepts such as ideology and ability. We discussed an application of item response
theory to political polarization in the US Congress. The idea is to infer legislators’
ideological positions from their roll call votes. The same method was also applied to
measure students’ abilities from standardized tests. Using the estimated ideal points
as an example, we also learned how to apply a basic clustering algorithm called the
k-means algorithm in order to discover latent groups of observations with similar
characteristics in data.

In addition to these concepts and methods, the chapter also introduced various
numerical and visual summaries of data. While a bar plot summarizes the distribution
of a factor variable, box plots and histograms are useful tools for depicting the distri-
bution of continuous variables. The correlation coefficient numerically characterizes
the association between two variables, whereas a scatter plot plots one variable against
the other. Finally, unlike scatter plots, quantile–quantile plots (Q–Q plots) enable
comparison of the distributions of two variables even when they are not measured in
the same units.

3.9 Exercises

3.9.1 CHANGING MINDS ON GAY MARRIAGE: REVISITED
In this exercise, we revisit the gay marriage study we analyzed in section 2.8.2. It

is important to work on that exercise before answering the following questions. In
May 2015, three scholars reported several irregularities in the data set used to produce
the results in the study.3 They found that the gay marriage experimental data were
statistically indistinguishable from data in the Cooperative Campaign Analysis Project
(CCAP), which interviewed voters throughout the 2012 US presidential campaign. The
scholars suggested that the CCAP survey data—and not the original data alleged to
have been collected in the experiment—were used to produce the results reported in
the gay marriage study. The release of a report on these irregularities ultimately led to
the retraction of the original article. In this exercise, we will use several measurement
strategies to reproduce the irregularities observed in the gay marriage data set.

To do so, we will use two CSV data files: a reshaped version of the original data set
in which every observation corresponds to a unique respondent, gayreshaped.csv
(see table 3.5), and the 2012 CCAP data set alleged to have been used as the basis for
the gay marriage study results, ccap2012.csv (see table 3.6). Note that the feeling

3 This exercise is based on the unpublished report “Irregularities in LaCour (2014)” by David Broockman,
Joshua Kalla, and Peter Aronow.
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Table 3.5. Gay Marriage Reshaped Data.

Variable Description

study which study the data set is from (1 = study 1, 2 = study 2)
treatment five possible treatment assignment options
therm1 survey thermometer rating of feeling towards gay couples in wave 1 (0–100)
therm2 survey thermometer rating of feeling towards gay couples in wave 2 (0–100)
therm3 survey thermometer rating of feeling towards gay couples in wave 3 (0–100)
therm4 survey thermometer rating of feeling towards gay couples in wave 4 (0–100)

Note: See table 2.7 for the original data.

Table 3.6. 2012 Cooperative Campaign Analysis Project (CCAP) Survey Data.

Variable Description

caseid unique respondent ID
gaytherm survey thermometer rating of feeling towards gay couples (0–100)

thermometer measures how warmly respondents feel towards gay couples on a 0–100
scale.

1. In the gay marriage study, researchers used seven waves of a survey to assess
how lasting the persuasion effects were over time. One irregularity the scholars
found is that responses across survey waves in the control group (where no
canvassing occurred) had unusually high correlation over time. What is the
correlation between respondents’ feeling thermometer ratings in waves 1 and 2
for the control group in study 1? To handle missing data, we should set the use
argument of the cor() function to "complete.obs" so that the correlation
is computed using only observations that have no missing data. Provide a brief
substantive interpretation of the results.

2. Repeat the previous question using study 2 and comparing all waves within
the control group. Note that the cor() function can take a single data frame
with multiple variables. To handle missing data in this case, we can set the
use argument to "pairwise.complete.obs". This means that the cor()
function uses all observations that have nomissing values for a given pair of waves
even if some of them have missing values in other waves. Briefly interpret the
results.

3. Most surveys find at least some outliers or individuals whose responses are
substantially different from the rest of the data. In addition, some respondents
may change their responses erratically over time. Create a scatter plot to visualize
the relationships between wave 1 and each of the subsequent waves in study 2.
Use only the control group. Interpret the results.
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4. The researchers found that the data of the gay marriage study appeared un-
usually similar to the 2012 CCAP data set even though they were supposed
to be samples of completely different respondents. We use the data contained
in ccap2012.csv and gayreshaped.csv to compare the two samples.
Create a histogram of the 2012 CCAP feeling thermometer, the wave-1 feeling
thermometer from study 1, and the wave-1 feeling thermometer from study 2.
There are a large number of missing values in the CCAP data. Consider how the
missing data might have been recoded in the gay marriage study. To facilitate
the comparison across histograms, use the breaks argument in the hist()
function to keep the bin sizes equal across histograms. Briefly comment on the
results.

5. A more direct way to compare the distributions of two samples is through
a quantile–quantile plot. Use this visualization method to conduct the same
comparison as in the previous question. Briefly interpret the plots.

3.9.2 POLITICAL EFFICACY IN CHINA AND MEXICO
In 2002, the World Health Organization conducted a survey of two provinces in

China and three provinces in Mexico.4 One issue of interest, which we analyze in this
exercise, concerns political efficacy. First, the following self-assessment question was
asked.

How much say do you have in getting the government to address issues that
interest you?

(5) Unlimited say, (4) A lot of say, (3) Some say, (2) Little say, (1) No say at all.

After the self-assessment question, three vignette questions were asked.

[Alison] lacks clean drinking water. She and her neighbors are supporting an
opposition candidate in the forthcoming elections that has promised to address
the issue. It appears that so many people in her area feel the same way that the
opposition candidate will defeat the incumbent representative.

[Jane] lacks clean drinking water because the government is pursuing an
industrial development plan. In the campaign for an upcoming election, an
opposition party has promised to address the issue, but she feels it would be
futile to vote for the opposition since the government is certain to win.

[Moses] lacks clean drinking water. He would like to change this, but he can’t
vote, and feels that no one in the government cares about this issue. So he suffers
in silence, hoping something will be done in the future.

The respondent was asked to assess each vignette in the same manner as the self-
assessment question.

4 This exercise is based on Gary King, Christopher J.L. Murray, Joshua A. Salomon, and Ajay Tandon (2004)
“Enhancing the validity and cross-cultural comparability of measurement in survey research.” American Political
Science Review, vol. 98, no. 1 (February), pp. 191–207.
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Table 3.7. Vignette Survey Data.

Variable Description

self self-assessment response
alison response to the Alison vignette
jane response to the Jane vignette
moses response to the Moses vignette
china 1 for China and 0 for Mexico
age age of respondent in years

How much say does [“name”] have in getting the government to address issues
that interest [him/her]?

(5) Unlimited say, (4) A lot of say, (3) Some say, (2) Little say, (1) No say at all.

[“name”] is replaced by either Alison, Jane, or Moses.
The data set we analyze vignettes.csv contains the variables whose names and

descriptions are given in table 3.7. In the analysis that follows, we assume that these
survey responses can be treated as numerical values. For example, “Unlimited say”= 5,
and “Little say” = 2. This approach is not appropriate if, for example, the difference
between “Unlimited say” and “A lot of say” is not the same as the difference between
“Little say” and “No say at all.” However, relaxing this assumption is beyond the scope
of this chapter.

1. We begin by analyzing the self-assessment question. Plot the distribution of
responses separately for China and Mexico using bar plots, where the vertical
axis is the proportion of respondents. In addition, compute themean response for
each country. According to this analysis, which country appears to have a higher
degree of political efficacy? How does this evidence match with the fact that in
the 2000 election, Mexican citizens voted out of office the ruling Institutional
Revolutionary Party (PRI) who had governed the country for more than 80 years,
while Chinese citizens have not been able to vote in a fair election to date?

2. We examine the possibility that any difference in the levels of efficacy between
Mexican and Chinese respondents is due to the difference in their age distribu-
tions. Create histograms for the age variable separately for Mexican and Chinese
respondents. Add a vertical line representing the median age of the respondents
for each country. In addition, use a quantile–quantile plot to compare the two
age distributions. What differences in age distribution do you observe between
the two countries? Answer this question by interpreting each plot.

3. One problem with the self-assessment question is that survey respondents may
interpret the question differently. For example, two respondents who choose the
same answer may be facing quite different political situations and hence may in-
terpret “A lot of say” differently. To address this problem, we rank a respondent’s
answer to the self-assessment question relative to the same respondent’s answer
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to a vignette question. Compute the proportion of respondents, again separately
for China and Mexico, who rank themselves (according to the self-assessment
question) as having less say in the government’s decisions than Moses (the last
vignette). How does the result of this analysis differ from that of the previous
analysis? Give a brief interpretation of the result.

4. We focus on survey respondents who ranked these three vignettes in the expected
order (i.e., Alison ≥ Jane ≥ Moses). Create a variable that represents how
respondents rank themselves relative to these vignettes. This variable should be
equal to 1 if respondents rank themselves less than Moses, 2 if ranked the same
as Moses or between Moses and Jane, 3 if ranked the same as Jane or between
Jane and Alison, and 4 if ranked the same as Alison or higher. Create the bar
plots of this new variable as done in question 1. The vertical axis should represent
the proportion of respondents for each response category. Also, compute the
mean value of this new variable separately for China and Mexico. Give a brief
interpretation of the result by comparing these results with those obtained in
question 1.

5. Is the problem identified above more or less severe among older respondents
when compared to younger ones? Answer the previous question separately for
those who are 40 years or older and those who are younger than 40 years. Does
your conclusion for the previous question differ between these two groups of
respondents? Relate your discussion to your finding for question 2.

3.9.3 VOTING IN THE UNITED NATIONS GENERAL ASSEMBLY
Like legislators in the US Congress, the member states of the United Nations (UN)

are politically divided on many issues such as trade, nuclear disarmament, and human
rights. During the ColdWar, countries in the UNGeneral Assembly tended to split into
two factions: one led by the capitalist United States and the other by the communist
Soviet Union. In this exercise, we will analyze how states’ ideological positions, as
captured by their votes on UN resolutions, have changed since the fall of communism.5
Table 3.8 presents the names and descriptions of the variables in the data set contained
in the CSV file unvoting.csv.

In the analysis that follows, we measure state preferences in two ways. First, we can
use the proportion of votes by each country that coincide with votes on the same issue
cast by the two major Cold War powers: the United States and the Soviet Union. For
example, if a country voted for 10 resolutions in 1992, and if its vote matched the
United States’s vote on exactly 6 of these resolutions, the variable PctAgreeUS in
1992 would equal 60 for this country. Second, we can also measure state preferences in
terms of numerical ideal points as explained in section 3.5. These ideal points capture
what international relations scholars have called countries’ liberalism on issues such
as political freedom, democratization, and financial liberalization. The two measures

5 This exercise is based on Michael A. Bailey, Anton Strezhnev, and Erik Voeten (2015) “Estimating
dynamic state preferences from United Nations voting data.” Journal of Conflict Resolution, doi = 10.1177/
0022002715595700.
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Table 3.8. United Nations Ideal Points Data.

Variable Description

CountryName name of the country
CountryAbb abbreviated name of the country
idealpoint its estimated ideal point
Year year for which the ideal point is estimated
PctAgreeUS proportion of votes that match with votes cast by the

United States on the same issue
PctAgreeRUSSIA proportion of votes that match with votes cast by

Russia/the Soviet Union on the same issue

are highly correlated, with larger (more liberal) ideal points corresponding to a higher
proportion of votes that agree with the United States.

1. We begin by examining how the distribution of state ideal points has changed
since the end of communism. Plot the distribution of ideal points separately for
1980 and 2000—about 10 years before and 10 years after the fall of the Berlin
Wall, respectively. Add the median to each plot as a vertical line. How do the
two distributions differ? Pay attention to the degree of polarization and give a
brief substantive interpretation of the results. Use the quantile() function to
quantify the patterns you identified.

2. Next, examine how the number of countries voting with the United States has
changed over time. Plot the average percentage agreement with the United States
across all countries over time. Also, add the average percentage agreement with
Russia as another line for comparison. Using the tapply() function may help
with this analysis. Does the United States appear to be getting more or less
isolated over time, as compared to Russia? Identify some countries that are
consistently pro-US. What are the most pro-Russian countries? Give a brief
substantive interpretation of the results.

3. One problem with using the proportion of votes that agree with the United States
or Russia as a measure of state preferences is that the ideological positions, and
consequently the voting patterns, of the two countries might themselves have
changed over time. This makes it difficult to know which countries’ ideological
positions have changed. Investigate this issue by plotting the evolution of the
two countries’ ideal points over time. Add the yearly median ideal point of
all countries. How might the results of this analysis modify (or not) your
interpretation of the previous analysis?

4. Let’s examine how countries that were formerly part of the Soviet Union differ
in terms of their ideology and UN voting compared to countries that were
not part of the Soviet Union. The former Soviet Union countries are Estonia,
Latvia, Lithuania, Belarus, Moldova, Ukraine, Armenia, Azerbaijan, Georgia,
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Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Russia. The
%in% operator, which is used as x %in% y, may be useful. This operator returns
a logical vector whose elements are TRUE if the corresponding element of vector x
is equal to a value contained in vector y and otherwise FALSE. Focus on the most
recently available UN data from 2012 and plot each post-Soviet Union state’s
ideal point against the proportion of its votes that agree with the United States.
Compare the post-Soviet Union states, within the same plot, against the other
countries. Briefly comment on what you observe.

5. We have just seen that while some post-Soviet countries have retained nonliberal
ideologies, other post-Soviet countries were much more liberal in 2012. Let’s
examine how themedian ideal points of Soviet/post-Soviet countries and all other
countries have varied over all the years in the data. Plot these median ideal points
by year. Be sure to indicate 1989, the year of the fall of the Berlin Wall, on the
graph. Briefly comment on what you observe.

6. Following the end of communism, countries that were formerly part of the Soviet
Union have becomemuchmore ideologically diverse. Is this also true of the world
as a whole? In other words, do countries still divide into two ideological factions?
Let’s assess this question by applying the k-means clustering algorithm to ideal
points and the proportion of votes agreeing with the United States. Initiate the
algorithm with just two centroids and visualize the results separately for 1989
and 2012. Briefly comment on the results.



Chapter 4

Prediction

Prophecy is a good line of business, but it is full of risks.
— Mark Twain, Following the Equator

In this chapter, we discuss prediction. Prediction is another important goal of data
analysis in quantitative social science research. Our first example concerns the predic-
tion of election outcomes using public opinion polls. We also show how to predict
outcomes of interest using a linear regression model, which is one of the most basic
statistical models. While many social scientists see causal inference as the ultimate goal
of scholarly inquiry, prediction is often the first step towards understanding complex
causal relationships that underlie human behavior. Indeed, valid causal inference
requires the accurate prediction of counterfactual outcomes. Later in the chapter we
discuss the connections between prediction and causal inference.

4.1 Predicting Election Outcomes

The 2008 US presidential election was historic. For the first time in American
history, an African-American candidate, Barack Obama, was elected. This election was
also important for the statistics community because a number of pundits accurately
predicted the election outcome.

The United States’s unique Electoral College system makes predicting election
outcomes challenging. A candidate is elected to office by winning an absolute majority
of electoral votes. Each of the 538 electors casts a single electoral vote. As of 2016, 535
of these votes are allocated among 50 states, corresponding to the 435 members of the
House of Representatives and the 100 members of the Senate. The remaining 3 votes
are given to the District of Columbia. In most cases, the electors vote for the candidate
who won the plurality of votes in the state they represent, leading to a “winner-take-
all” system in these states. In fact, some states have criminal penalties for voting for
the candidate who did not win the plurality of votes. A winning presidential candidate
must obtain at least 270 electoral votes.

Figure 4.1 shows the map of Electoral College votes for the 2008 election. See page
C2 for the full-color version. Obama won 365 electoral votes (blue states), whereas
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Figure 4.1. Electoral College Map of the 2008 US Presidential Election. The figure uses
gray rather than red for the states won by McCain. See page C2 for the full-color version.

the Republican candidate John McCain received 173 votes (red states).1 The Electoral
College system implies that to successfully forecast the outcome of the US presidential
election, we may need to accurately predict the winner of each state. Indeed, George
W. Bush won the 2000 election by taking 25 electoral votes from Florida, where he
defeated Al Gore by a slim margin of 537 votes after a controversial recount. As a
result, Gore lost the election by the narrow margin of 5 electoral votes, even though
he actually received a half million more popular votes than Bush at the national level.
More recently, Donald Trump won the 2016 election even though Hillary Clinton
receivedmore votes nationally than Trump. Below, we show how to predict the election
outcome using public opinion polls conducted within each state. Before we present the
details of how this is done, we introduce two new programming concepts: loops and
conditional statements.

4.1.1 LOOPS IN R
In many situations, we want to repeat the same operations multiple times where

only small changes occur to the operations each time. For example, in order to forecast
the result of the US presidential election, we must predict the election outcome within
each state. This means that a similar set of computations will be performed a number
of times. We would like to avoid writing nearly identical code chunks over and over
again. A loop is a programming construct that allows us to repeatedly execute similar
code chunks in a compact manner. The R syntax for (i in X) will create a loop,
where i (or any other object name of your choice) is a loop counter that controls the

1 Interestingly, Nebraska allocates two of its five electoral votes to the statewide winner while giving one
electoral vote to the winner of each congressional district (Maine follows the same system). As a result, although
McCain won a plurality of the popular vote in Nebraska, Obama received one electoral vote because he won the
majority of votes in the second congressional district.
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iterations of the loop, and X is the vector of values that the loop counter will successively
take on. Consider the following pseudo-code.

for (i in X) {

expression1

expression2

...

expressionN

}

Here, the collection of expressions from expression1 through expressionN is
repeated for each value i of the vector X. During each of these iterations, i takes on the
corresponding value from the vector X, starting with the first element of X and ending
with its last. Below is a simple example, which multiplies each number in a vector by
2. It is often useful to create an empty “container” vector whose elements are all NAs
in order to store the results from computing all iterations. We use the rep() function
to do this. Comments can be written into the loop as with any other code chunk in
R. Braces { and } are used to denote the beginning and end of the body of the loop.
When we start a loop (or related functions) in the RStudio text editor, the spacing will
automatically indent and the closing bracket will align vertically with the for function.
This makes the code easier to interpret and debug (i.e., identify and remove errors from
the code).

values <- c(2, 4, 6)

n <- length(values) # number of elements in “values”

results <- rep(NA, n) # empty container vector for storing the results

## loop counter “i” will take values 1, 2, ..., n in that order

for (i in 1:n) {

## store the result of multiplication as the ith element of

## “results” vector

results[i] <- values[i] * 2

cat(values[i], "times 2 is equal to", results[i], "\n")

}

## 2 times 2 is equal to 4

## 4 times 2 is equal to 8

## 6 times 2 is equal to 12

results

## [1] 4 8 12

In each iteration of the above loop, the loop counter i takes an integer value, starting
with 1 and ending with n with an increment of 1. Note that the cat() function,
like print(), prints out an object on the screen. The cat() function combines
multiple objects (character or other) into a character string, as inputs separated by
commas. Without either the cat() or print() function, a loop will not print out
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the results[i] value on the screen. Finally, recall that \n indicates the addition of
a new line. Of course, in the above example, the loop is not strictly necessary because
one can simply execute values * 2, which multiplies each element of the values
vector by 2. Indeed, while loops may be conceptually easier, they are computationally
intensive and so should be avoided whenever possible.

One important process is debugging code that involves a loop. Several strategies
can reveal why a loop is not running properly. Since a loop simply executes the same
command chunks many times, one could check whether the commands that go inside
the loop can be executed without any error given a specific value of the loop counter.
In the above example, one may simply try the following command before constructing
the loop.

## check if the code runs when i = 1

i <- 1

x <- values[i] * 2

cat(values[i], "times 2 is equal to", x, "\n")

## 2 times 2 is equal to 4

Then, tomake sure it behaves as we expect, we can change the first line to i <- 2 or
any other value that we want the loop counter i to take on. Another useful tip is to use
the print() or cat() functions to print out the current value of the loop counter.
This way, when there is an error, you always know how much of the loop succeeded.
For example, if you cannot even run one iteration, there is likely something wrong with
the code in the body of the loop. Alternatively, if the loop works for several iterations
and then fails, perhaps something specific about the iteration that failed is causing the
problem. The following example prints the iteration number to help identify the coding
error. We use the data.frame() function to create an artificial data set with three
variables, one of which is a character variable, and then attempt to compute the median
of each variable using a loop.

## a toy data frame

data <- data.frame("a" = 1:2, "b" = c("hi", "hey"), "c" = 3:4)

## we see an error occurring at iteration 2

results <- rep(NA, 3)

for (i in 1:3) {

cat("iteration", i, "\n")

results[i] <- median(data[, i])

}

## iteration 1

## iteration 2

## Error in median.default(data[, i]): need numeric data

results

## [1] 1 NA NA
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The loop was successfully executed in the first iteration but failed in the second
iteration. This can be seen from the fact that an error message was printed before
the printout of the iteration 3 message. The reason for the failure is that the
median() function takes numeric data only. As a result, the function produced an
error in the second iteration, making the loop halt without computing the median
for the second and third variables. This is indicated by NAs in the second and third
elements of the results vector.

4.1.2 GENERAL CONDITIONAL STATEMENTS IN R
In section 2.2.4, we introduced simple conditional statements. We used the

ifelse() function to create a vector of values where the elements of the resulting
vector depend on an input object of the logical class. The general syntax is ifelse(X,
Y, Z). If an element X in the input is evaluated as TRUE, the value Y would be
returned. If X is evaluated as FALSE, then the other value, Z, would be returned. This
function is useful when recoding variables. Now, we will consider a more powerful
form of conditional statements that can implement (or not) arbitrary chunks of
R code depending on a logical expression. These take the form of if(){} and
if(){}else{}. The first basic syntax is as follows.

if (X) {

expression1

expression2

...

expressionN

}

If the value of X is TRUE, the code chunk expression1 through expressionN
will be executed. If the value of X is FALSE, then it will skip that code chunk entirely.
The following simple example illustrates this.

## define the operation to be executed

operation <- "add"

if (operation == "add") {

cat("I will perform addition 4 + 4\n")

4 + 4

}

## I will perform addition 4 + 4

## [1] 8

if (operation == "multiply") {

cat("I will perform multiplication 4 * 4\n")

4 * 4

}
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In the above code, the second portion of code on multiplication was not executed
because the operation object was set to "add" rather than "multiply". Thus,
the expression operation == "multiply" returned a logical value of FALSE,
indicating that the code chunk contained in the brackets is not performed. However,
if operation is set to "multiply", then 4 * 4, rather than 4 + 4, will be
evaluated.

The if(){}else{} statements allow for greater flexibility by incorporating a set
of R expressions to be evaluated if the argument in the if() function is FALSE.
They contrast with the if(){} statements, which specify only the expressions to
be evaluated when the argument in the if() function is TRUE. The following
code will execute the code chunk expression1a through expressionNa if X
is TRUE and the code chunk expression1b through expressionNb if X is
FALSE.

if (X) {

expression1a

...

expressionNa

} else {

expression1b

...

expressionNb

}

Building on the earlier example, the following code illustrates how if(){}else{}
statements work, implementing a different operation depending on the value of an
object. Specifically, if the operation object is set to "add", then the addition is
performed, but otherwise, the multiplication is executed.

## note that “operation” is redefined

operation <- "multiply"

if (operation == "add") {

cat("I will perform addition 4 + 4")

4 + 4

} else {

cat("I will perform multiplication 4 * 4")

4 * 4

}

## I will perform multiplication 4 * 4

## [1] 16

One can construct even more complicated conditional statements using the else
if(){} statement in the following manner.
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if (X) {

expression1a

...

expressionNa

} else if (Y) {

expression1b

...

expressionNb

} else {

expression1c

...

expressionNc

}

The above syntax will execute the code chunk expression1a through
expressionNa if condition X is met. If X is not met, but another condition Y is
met, then the code chunk expression1b through expressionNb will be executed.
Finally, if both X and Y are not satisfied, then the code chunk expression1c through
expressionNc will be executed. Note that else if() can be repeated many times.
In addition, the order of expressions matters. For example, if condition Y rather than X
is evaluated first, then the code may produce a different result. Using else if(){},
we can modify the above example as follows.

## note that “operation” is redefined

operation <- "subtract"

if (operation == "add") {

cat("I will perform addition 4 + 4\n")

4 + 4

} else if (operation == "multiply") {

cat("I will perform multiplication 4 * 4\n")

4 * 4

} else {

cat("“", operation, "” is invalid. Use either “add” or “multiply.”\n",

sep = "")

}

## “subtract” is invalid. Use either “add” or “multiply.”

Note that the sep argument specifies how each object should be separated. In
the above example, sep = "" means that no character separates these objects. A
separator can be any character string, commonly a comma and space (sep = ", ")
or a semicolon and space (sep = "; "). The default is sep = " ", which will insert
a space between objects.
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Finally, conditional statements can be used effectively within a loop. Suppose, for
example, that we want to perform a different arithmetic operation depending on
whether an integer is even or odd. The following code first checks whether the input
integer value is even or not. If it is even, R adds it to itself. If it is odd, R multiplies it.
A message summarizing this operation is printed out for each iteration. In R, the %%
operator computes the remainder of a division. For example, 5 %% 2 will return 1,
which is the remainder for the division of 5 by 2. If dividing an input integer value by
2 returns the remainder of 0 rather than 1, we conclude that it is an even number.

values <- 1:5

n <-length(values)

results <- rep(NA, n)

for (i in 1:n) {

## x and r get overwritten in each iteration

x <- values[i]

r <- x %% 2 # remainder when divided by 2 to check whether even or odd

if (r == 0) { # remainder is zero

cat(x, "is even and I will perform addition",

x, "+", x, "\n")

results[i] <- x + x

} else { # remainder is not zero

cat(x, "is odd and I will perform multiplication",

x, "*", x, "\n")

results[i] <- x * x

}

}

## 1 is odd and I will perform multiplication 1 * 1

## 2 is even and I will perform addition 2 + 2

## 3 is odd and I will perform multiplication 3 * 3

## 4 is even and I will perform addition 4 + 4

## 5 is odd and I will perform multiplication 5 * 5

results

## [1] 1 4 9 8 25

Here, the code indentation, which is done automatically in RStudio, is important,
making it clear that conditional statements are nested within a loop. The use of
appropriate indentation is essential for writing computer code that contains loops and
conditional statements.

4.1.3 POLL PREDICTIONS
Given that we now know how to use loops and conditional statements, we undertake

the task of predicting the outcome of the 2008 US presidential election. Our forecast
is based on a number of public opinion polls conducted before the election. The CSV
data file pres08.csv contains the election results by state. In addition, we have the
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Table 4.1. 2008 US Presidential Election Data.

Variable Description

state abbreviated name of the state
state.name unabbreviated name of the state
Obama Obama’s vote share (percentage)
McCain McCain’s vote share (percentage)
EV number of Electoral College votes for the state

Table 4.2. 2008 US Presidential Election Polling Data.

Variable Description

state abbreviated name of the state in which the poll was conducted
Obama predicted support for Obama (percentage)
McCain predicted support for McCain (percentage)
Pollster name of the organization conducting the poll
middate middate of the period when the poll was conducted

CSV file polls08.csv, which contains many polls within each state leading up to
the election.2 The names and descriptions of the variables in these data sets are given
in tables 4.1 and 4.2, respectively. We begin by creating a variable, called margin, in
both data frames, which represents Obama’s vote margin over McCain in percentage
points.

## load election results, by state

pres08 <- read.csv("pres08.csv")

## load polling data

polls08 <- read.csv("polls08.csv")

## compute Obama’s margin

polls08$margin <- polls08$Obama - polls08$McCain

pres08$margin <- pres08$Obama - pres08$McCain

For each state, we generate a poll prediction for Obama’s margin of victory using
only the latest polls from the state. That is, we compute the mean prediction of all polls
taken in the state on the day closest to the election. Note that this day may differ among
states and there may be multiple polls conducted on the same day (more accurately,
the same middate). To do this, we first initialize or create an empty vector of length 51,
called poll.pred, which will contain the poll prediction for each of the 50 states and
the District of Columbia. In the loop, we subset the data so that each iteration contains
only the polls from one state.

2 The polling data were obtained from http://electoral-vote.com.

http://electoral-vote.com


132 Chapter 4: Prediction

We then further subset to extract the polls that were conducted within the state on
the day closest to Election Day. This last step requires the conversion of the middate
variable into the Date class using the as.Date() function. The Date class is useful
because it can easily compute the number of days between the two specific dates. Input
to the as.Date() function is a character string of the form year-month-date or
year/month/date.

x <- as.Date("2008-11-04")

y <- as.Date("2008/9/1")

x - y # number of days between 2008/9/1 and 11/4

## Time difference of 64 days

Using this operation, we create the variable, called DaysToElection, which
represents the number of days to the election.We compute this as the difference in days
between the middate and Election Day (November 4). Finally, we compute the mean
of poll predictions and store it as the corresponding element of poll.pred. Note that
we use the unique() function to extract the unique state names in the code chunk
below.

## convert to a Date object

polls08$middate <- as.Date(polls08$middate)

## compute the number of days to Election Day

polls08$DaysToElection <- as.Date("2008-11-04") - polls08$middate

poll.pred <- rep(NA, 51) # initialize a vector place holder

## extract unique state names which the loop will iterate through

st.names <- unique(polls08$state)

## add state names as labels for easy interpretation later on

names(poll.pred) <- as.character(st.names)

## loop across 50 states plus DC

for (i in 1:51){

## subset the ith state

state.data <- subset(polls08, subset = (state == st.names[i]))

## further subset the latest polls within the state

latest <- subset(state.data, DaysToElection == min(DaysToElection))

## compute the mean of latest polls and store it

poll.pred[i] <- mean(latest$margin)

}

To set up the loop, we use the unique() function to extract the set of unique
state names. Within the loop, we first subset the data for the ith state and store it as
state.data. For example, if i equals 1, it is Alabama and hence st.names[i]
yields AL. We then further subset the data by extracting only the polls taken on
the day closest to Election Day, which is indicated by the minimum value of the
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DaysToElection variable. Finally, the resulting data latest is used to compute
the average of the predicted margins from the latest polls.

We investigate the accuracy of our poll prediction by subtracting it from the actual
election result of each state. The difference between the actual and predicted outcome
is called the prediction error. We compute the prediction error by comparing the actual
margin of victory with the predicted margin. We then compute the mean of poll
prediction errors across states. This represents the average prediction error, which we
call bias.

## error of latest polls

errors <- pres08$margin - poll.pred

names(errors) <- st.names # add state names

mean(errors) # mean prediction error

## [1] 1.062092

The result shows that on average across all states the poll predictions are approx-
imately unbiased. More precisely, the mean of poll prediction errors across states is
1.1 percentage points, representing a bias of small magnitude. The poll predictions
are for some states above and for other states below the actual election results, but
on average these errors appear to roughly cancel out. While the poll predictions
are approximately unbiased across states, the prediction for each state may not be
accurate. For some states, the poll predictions may be well above the actual margins
of victory, and these positive prediction errors are offset by large negative prediction
errors for other states. To investigate this possibility, we compute the root mean square
(RMS) of prediction error (see equation (2.3) introduced in section 2.6.2) or root-
mean-squared error (RMSE), which represents the average magnitude of prediction
error.

sqrt(mean(errors^2))

## [1] 5.90894

The result indicates that the average magnitude of each poll prediction error is about
6 percentage points.

The prediction error is defined as

prediction error = actual outcome − predicted outcome.

The average prediction error is called bias, and prediction is said to be unbiased
when its bias is zero. Finally, the root mean square of prediction error is called
root-mean-squared error, representing the average magnitude of prediction
error.
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To obtain a more complete picture of prediction errors, we create a histogram using
the hist() function (see section 3.3.2).

## histogram

hist(errors, freq = FALSE, ylim = c(0, 0.08),

main = "Poll prediction error",

xlab = "Error in predicted margin for Obama (percentage points)")

## add mean

abline(v = mean(errors), lty = "dashed", col = "blue")

text(x = -7, y = 0.08, "average error", col = "blue")
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The histogram shows that the poll prediction error varies widely from one state to
another. However, most errors are relatively small and larger errors are less likely to
occur, yielding a bell-shaped distribution around zero.

We further examine the accuracy of poll predictions for each state by plotting them
(horizontal axis) against the corresponding actual election results (vertical axis) using
the two-letter state-name variable state. The states below (above) the 45-degree
line indicate that the poll predictions were too favorable towards Obama (McCain).
To plot text, we first create an “empty” plot by setting the type argument in the
plot() function to "n" and then use the text() function to add state labels. As
its first two arguments, the text() function takes the x and y coordinates for the
location where the character string is to be plotted. The third argument of this function,
labels, is a character vector of text labels to be plotted. In the current example, the
x-coordinates and y-coordinates represent the poll predictions and Obama’s actual
margins.
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## type = "n" generates "empty" plot

plot(poll.pred, pres08$margin, type = "n", main = "", xlab = "Poll results",

xlim = c(-40, 90), ylim = c(-40, 90), ylab = "Actual election results")

## add state abbreviations

text(x = poll.pred, y = pres08$margin, labels = pres08$state, col = "blue")

## lines

abline(a = 0, b = 1, lty = "dashed") # 45-degree line

abline(v = 0) # vertical line at 0

abline(h = 0) # horizontal line at 0
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Although for some states like the District of Columbia (DC) and Vermont (VT) the
poll prediction is grossly inaccurate, this may not matter given that the US presidential
election is essentially based on the winner-take-all system for each state. On the other
hand, even when poll predictions are close to the actual election results in terms of
percentage points, polls may predict the wrong candidate as the winner of a state.
There are two types of prediction errors where the poll predictions chose the wrong
winner. In the above plot, for the states that are plotted in the upper-left quadrant,
Obama was predicted to lose (because the poll results are negative) but he actually
won the states (because the actual election results are positive). Conversely, for the
states in the lower-right quadrant, Obama was predicted to win but actually lost the
states. The plot suggests that the poll predictions accurately chose the winner for most
states. However, three states, which the poll predictions called wrongly, had a close
race with the margin of victory approximately equal to 1 percentage point. We can use
the sign() function to determine the sign of poll.pred and pres08$margin for
each state. The function returns 1 if positive (Obama wins) and -1 if negative (McCain
wins) (0 if zero, a tie).
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Table 4.3. Confusion Matrix.

Actual outcome
Positive Negative

Predicted outcome
Positive true positive false positive
Negative false negative true negative

Note: There are two types of correct classification, true positive and true negative.
Similarly, false positive and false negative are two kinds of misclassification.

## which state polls called wrong?

pres08$state[sign(poll.pred) != sign(pres08$margin)]

## [1] IN MO NC

## 51 Levels: AK AL AR AZ CA CO CT DC DE FL GA HI IA ID ... WY

## what was the actual margin for these states?

pres08$margin[sign(poll.pred) != sign(pres08$margin)]

## [1] 1 -1 1

The problem of predicting the outcome category or class is called classification. In
the current context, for each state, we would like to predict whether Obama wins or
not. In a classification problem, prediction is either exactly correct or incorrect, and an
incorrect prediction is calledmisclassification. In our analysis, the misclassification rate
is 3/51, which is about 6 percent.

In a binary classification problem, there are two types of misclassification. We
may predict Obama to be the winner for a state where he actually lost the election.
Conversely, Obama may be predicted to lose a state and yet in the actual election
win it. If we regard Obama’s victory (rather than his loss) as the “positive” outcome,
then the former type of misclassification is called false positive whereas the latter
is false negative. In the current example, Missouri (MO) is a false positive while
Illinois (IN) and North Carolina (NC) are false negatives. Table 4.3 presents a con-
fusion matrix where the two types of misclassification and correct classification are
shown.

Classification refers to the problem of predicting a categorical outcome. Clas-
sification is either correct or incorrect. In a binary classification problem, there
are two types of misclassification: false positive and false negative, representing
incorrectly predicted positive and negative outcomes, respectively.

Finally, we can compute the number of Electoral College votes for Obama based
on the poll predictions and compare it against the actual result, which was 364 votes.
Since 270 votes was the winning threshold, the results show that the polls correctly
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called Obama the elected president. The predicted total number of Electoral College
votes was 15 fewer than the actual election result.3

## actual results: total number of electoral votes won by Obama

sum(pres08$EV[pres08$margin > 0])

## [1] 364

## poll prediction

sum(pres08$EV[poll.pred > 0])

## [1] 349

While the popular vote does not determine the election outcome, we can also
examine the accuracy of national polls and how public opinion changed over the course
of the campaign. To do this, we analyze the national polls contained in the CSV file
pollsUS08.csv. The names and descriptions of the variables in this data set are
identical to those of the last four variables in table 4.2. For each of the last 90 days of
the campaign, we compute the average of support for each candidate using all polls
taken within the past week and examine how it changes as Election Day nears. This can
be done with a loop, where for a given day we take all polls that were conducted within
the previous 7 days and on the corresponding day. We then compare these poll-based
predictions against the actual vote shares in the election, which were 52.9% and 45.7%
for Obama andMcCain, respectively. Using the code for state polls above as a template,
we construct the following code chunk.

## load the data

pollsUS08 <- read.csv("pollsUS08.csv")

## compute number of days to the election as before

pollsUS08$middate <- as.Date(pollsUS08$middate)

pollsUS08$DaysToElection <- as.Date("2008-11-04") - pollsUS08$middate

## empty vectors to store predictions

Obama.pred <- McCain.pred <- rep(NA, 90)

for (i in 1:90) {

## take all polls conducted within the past 7 days

week.data <- subset(pollsUS08, subset = ((DaysToElection <= (90 - i + 7))

& (DaysToElection > (90 - i))))

## compute support for each candidate using the average

Obama.pred[i] <- mean(week.data$Obama)

McCain.pred[i] <- mean(week.data$McCain)

}

Note that in the above code we utilize shortcut syntax to assign the same value to
multiple objects. Specifically, we use the single expression x <- y <- z rather than

3 As noted earlier, Obama received one vote from Nebraska even though he lost the statewide vote.
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two separate expressions, x <- z and y <- z, in order to assign the same value z to
two objects, x and y. Furthermore, within the loop, we subset the data pollsUS08 so
that the resulting data contain only the polls conducted within the past 7 days and the
day itself. For example, when the loop starts (i.e., i is equal to 1), we subset the polls
for which the DaysToElection variable is less than or equal to 96 (= 90 − 1 + 7)
and greater than 89 (= 90− 1). In the final iteration (i.e., i is equal to 90), this variable
for the subsetted data takes a value less than or equal to 7 (= 90 − 90 + 7) and greater
than 0 (= 90 − 90).

We now display the results using a time-series plot. We define the horizontal axis
such that its leftmost value is 90 days prior to Election Day and its rightmost value
is Election Day. This can be done by specifying the xlim argument to be c(90, 0)
instead of c(0, 90). The plot at the bottom uses gray circles rather than red for the
states won by McCain. See page C3 for the full-color version.

## plot going from 90 days to 1 day before the election

plot(90:1, Obama.pred, type = "b", xlim = c(90, 0), ylim = c(40, 60),

col = "blue", xlab = "Days to the election",

ylab = "Support for candidate (percentage points)")

## type = "b" gives plot that includes both points and lines

lines(90:1, McCain.pred, type = "b", col = "red")

## actual election results: pch = 19 gives solid circles

points(0, 52.93, pch = 19, col = "blue")

points(0, 45.65, pch = 19, col = "red")

## line indicating Election Day

abline(v = 0)

## labeling candidates

text(80, 48, "Obama", col = "blue")

text(80, 41, "McCain", col = "red")
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Which person is the most competent?

Figure 4.2. Example Pictures of Candidates Used in the Experiment. Source: A. Todorov
et al. (2005) Science, vol. 308, no. 10 (June), pp. 1623–1626.

The resulting figure demonstrates the reasonable accuracy of preelection polls in
terms of margin. Indeed, the Election Day margin (the difference between two solid
circles) almost coincides with the predicted margin based on the polls taken within
a week prior to the election. It is also interesting that public opinion shifts quite
a bit during the course of campaign. Two months before the election, support for
Obama was roughly tied with that for McCain. However, as Election Day approached,
Obama’s margin over McCain gradually increased. On Election Day, it was more than
7 percentage points. It is also worth noting that the proportion of other voters who
were either undecided or supported third-party candidates declined.

4.2 Linear Regression

In the previous section, we used polling data to predict election outcomes. When
doing so, we simply used the average of poll predictions. An alternative method of
prediction is based on a statistical model. In this section, we introduce one of the most
basic statistical models, called linear regression.

4.2.1 FACIAL APPEARANCE AND ELECTION OUTCOMES
Several psychologists have reported the intriguing result of an experiment showing

that facial appearance predicts election outcomes better than chance.4 In their experi-
ment, the researchers briefly showed student subjects the black-and-white head shots
of two candidates from a US congressional election (winner and runner-up). Figure 4.2
shows example pictures of the candidates from the 2004 Wisconsin Senate race. Russ
Feingold of the Democratic Party (left) was the actual winner, and Tim Michels of
the Republican Party (right) was the runner-up. The exposure of subjects to facial
pictures lasted less than a second, and the subjects were then asked to evaluate the
two candidates in terms of their perceived competence.

4 This section is based on Alexander Todorov, Anesu N. Mandisodza, Amir Goren, and Crystal C. Hall (2005)
“Inferences of competence from faces predict election outcomes.” Science, vol. 308, no. 10 (June), pp. 1623–1626.
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Table 4.4. Facial Appearance Experiment Data.

Variable Description

congress session of Congress
year year of the election
state state of the election
winner name of the winner
loser name of the runner-up
w.party party of the winner
l.party party of the loser
d.votes number of votes for the Democratic candidate
r.votes number of votes for the Republican candidate
d.comp competence measure for the Democratic candidate
r.comp competence measure for the Republican candidate

The researchers used these competence measures to predict election outcomes. The
key hypothesis is whether or not a within-a-second evaluation of facial appearance
can predict election outcomes. The CSV data set, face.csv, contains the data from
the experiment. Table 4.4 presents the names and descriptions of the variables in
this data set. Note that we include data only from subjects who did not know the
candidates’ political parties, their policies, or even which candidate was the incumbent
or challenger. They were simply making snap judgments about which candidate
appeared more competent based on their facial expression alone.

We begin our analysis of the facial appearance experiment data by creating a scatter
plot of the competence measure against election outcomes. To do this, we create the
win margins for Democratic candidates as the difference in two-party vote shares for
Democratic and Republican candidates. Positive win margins favor Democrats. A two-
party vote share is the number of votes each candidate receives out of just those votes
cast for a major party candidate (not out of all votes cast).

## load the data

face <- read.csv("face.csv")

## two-party vote share for Democrats and Republicans

face$d.share <- face$d.votes / (face$d.votes + face$r.votes)

face$r.share <- face$r.votes / (face$d.votes + face$r.votes)

face$diff.share <- face$d.share - face$r.share

Next, we use the plot() function to generate a scatter plot. To make the symbols
more informative, we can change them based on variables in our data set. The
argument pch for the plot() function can specify the type of points to be plotted
(see section 3.6).We use the ifelse() function when specifying the col argument so
that red dots are used for the races with Republican winners and blue dots are used for
those with Democratic winners. The plot shows amild upward trend in the Democratic
margin as the competence score for Democrats increases.
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plot(face$d.comp, face$diff.share, pch = 16,

col = ifelse(face$w.party == "R", "red", "blue"),

xlim = c(0, 1), ylim = c(-1, 1),

xlab = "Competence scores for Democrats",

ylab = "Democratic margin in vote share",

main = "Facial competence and vote share")

The plot below uses gray circles instead of red circles for Republican winners. See
page C3 for the full-color version.
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4.2.2 CORRELATION AND SCATTER PLOTS
We learned in section 3.6.2 that correlation represents the degree to which one

variable is associated with another. A positive (negative) value of correlationmeans that
one variable is more (less) likely to be above (below) its mean when the other variable
is above its own mean. The upwards-sloping data cloud in the above scatter plot shows
a positive correlation between perceived competence and vote share differential. To
compute the correlation coefficient, we use the function cor().

cor(face$d.comp, face$diff.share)

## [1] 0.4327743

This correlation of about 0.4 tells us that there is a moderately positive relation-
ship between a candidate’s perceived competence and his or her actual margin of
victory on Election Day. That is, candidates who appear more competent than their
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Figure 4.3. Correlation Coefficients and Patterns of the Data Cloud in Scatter Plots.

opponents—as rapidly judged by uninformed voters who don’t recognize the
candidates—are likely to win a higher share of the votes cast.

To get a better sense of the relationship between correlation coefficients and
data cloud shapes, figure 4.3 presents four artificial data sets with various degrees
of correlation. We observe that a positive (negative) correlation corresponds to an
upwards (downwards) trend in the data cloud, and a greater magnitude of the
correlation coefficient indicates a stronger linear relationship. Indeed, correlation
represents a linear relationship between two variables. Perfect positive (negative)
correlation, i.e., correlation of 1 (−1), would mean the two variables have a perfect
linear relationship with data points located on a single line.

Thus, it is important for us to note that a lack of correlation does not necessarily
imply a lack of a relationship. In panel (d), the correlation between the two variables
is low but there is a clear nonlinear relationship, which in this case is a quadratic
function.
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The correlation coefficient quantifies the linear relationship between two vari-
ables. An upwards trend in the data cloud in a scatter plot implies a positive
correlation, whereas a downwards trend in the data cloud represents a nega-
tive correlation. Correlation is often not suitable for representing a nonlinear
relationship.

4.2.3 LEAST SQUARES
As shown above, correlation describes a linear relationship between two variables.

However, such a relationship is best characterized using the following linear model:

Y = α︸︷︷︸
intercept

+ β︸︷︷︸
slope

X + ε︸︷︷︸
error term

. (4.1)

In the model, Y is the outcome or response variable and X is the predictor or inde-
pendent (explanatory) variable. In the current application, we will use the perceived
competence measure as the predictor and the difference in two-party vote share as the
outcome. Recall that any line can be defined by the intercept α and the slope parameter
β . The intercept α represents the average value of Y when X is zero. The slope β

measures the average increase in Y when X increases by one unit. The intercept and
slope parameters are together called coefficients. The error (or disturbance) term, ε,
allows an observation to deviate from a perfect linear relationship.

We use a model like this under the assumption that it approximates the data-
generating process well. However, as well-known statistician George Box has stated,
we must recognize that “all models are wrong, but some are useful.” Even if the data
are not generated according to the linear model specified in equation (4.1), the model
can be a useful tool to predict the outcome of interest.

Since the values of α and β in equation (4.1) are unknown to researchers, they must
be estimated from the data. In statistics, the estimates of parameters are indicated by
“hats,” where α̂ and β̂ represent the estimates of α and β , respectively. Once we obtain
the estimated values of coefficients α and β , then we have the so-called regression
line. We can use this line to predict the value of the outcome variable given that of
a predictor. Specifically, given a particular value of the predictor, X = x, we compute
the predicted value (or fitted value) of the outcome variable, denoted by Ŷ , using the
regression function

Ŷ = α̂ + β̂x. (4.2)

Most likely, the predicted value will not equal the observed value. The difference
between the observed outcome and its predicted value is called the residual or
prediction error. Formally, we can write the residual as

ε̂ = Y − Ŷ . (4.3)

Notice that the residual is represented by ε with a hat. Since the error term ε in
equation (4.1) is unobserved, the residual represents an estimate of this error term.
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The linear regression model is defined as

Y = α + βX + ε,

where Y is the outcome (or response) variable, X is the predictor or the inde-
pendent (or explanatory) variable, ε is the error (or disturbance) term, and (α, β)
are the coefficients. The slope parameter β represents the increase in the average
outcome associated with a one-unit increase in the predictor. Once the estimates
of the coefficients (α̂, β̂) are obtained from the data, we can predict the outcome,
using a given value of the predictor X = x, as Ŷ = α̂+β̂x. The difference between
the observed outcome and this fitted or predicted value Ŷ is called the residual and
is denoted by ε̂ = Y − Ŷ .

To fit a linear regression model in R, we use the lm() function. This function takes
a formula of the form Y ˜ X as the main argument where the outcome variable is Y
and the predictor is X, taken from a data frame specified as the data argument. Note
that an intercept will be automatically added to the regression model.

We now obtain the regression line for the facial appearance experiment data. We
use the Democratic margin in the two-party vote share as the response variable and the
perceived competence for Democratic candidates as the predictor.

fit <- lm(diff.share ~ d.comp, data = face) # fit the model

fit

##

## Call:

## lm(formula = diff.share ~ d.comp, data = face)

##

## Coefficients:

## (Intercept) d.comp

## -0.3122 0.6604

The output shows that the estimated intercept is −0.3122 whereas the estimated
slope is 0.6604. That is, when no experimental subject thinks a Democratic candidate
is more competent than a Republican counterpart, the predicted Democratic margin
of two-party vote share is approximately −31.2 percentage points. If the perceived
competence score increases by 10 percentage points, then the outcome variable is
predicted to increase on average by 6.6 (= 0.6604 × 10) percentage points.

There is an alternative way of fitting the same model without the data argument.
This requires specifying the entire names of objects for the outcome variable and the
predictor as follows.

lm(face$diff.share ~ face$d.comp)
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In general, this is not recommended because it unnecessarily complicates the syntax
and may cause confusion. However, it may be useful when the variables we wish to use
for regression exist as separate objects in the workspace.

In addition, to directly obtain the estimated coefficients (α̂, β̂) and the predicted or
fitted values Ŷ , we can use the coef() and fitted() functions, respectively.

coef(fit) # get estimated coefficients

## (Intercept) d.comp

## -0.3122259 0.6603815

head(fitted(fit)) # get fitted or predicted values

## 1 2 3 4 5

## 0.06060411 -0.08643340 0.09217061 0.04539236 0.13698690

## 6

## -0.10057206

It is straightforward to add the regression line to the scatter plot using the
abline() function which takes the output object from the lm() function as its input.
The plot also shows the estimated intercept α̂ as well as the observed outcome Y , the
predicted or fitted value Ŷ , and the residual ε̂ for one of the observations.

plot(face$d.comp, face$diff.share, xlim = c(0, 1.05), ylim = c(-1,1),

xlab = "Competence scores for Democrats",

ylab = "Democratic margin in vote share",

main = "Facial competence and vote share")

abline(fit) # add regression line

abline(v = 0, lty = "dashed")
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This regression line is the “line of best fit” because it minimizes the magnitude of
prediction error. To estimate the line’s intercept and slope parameters, a commonly
used method is that of least squares. The idea is to choose α̂ and β̂ such that together
they minimize the sum of squared residuals (SSR), which is defined as

SSR =
n∑

i=1

ε̂2i =
n∑

i=1

(Yi − Ŷi )2 =
n∑

i=1

(Yi − α̂ − β̂Xi )2. (4.4)

In the equation, Yi , Xi , and ε̂i represent the outcome variable, the predictor, and
the residual, respectively, for the i th observation, and n is the sample size. The
second and third equalities follow from the definition of the residual given in
equations (4.3) and (4.2), respectively. The value of SSR is difficult to interpret.
However, we can use the idea of root mean square (RMS) introduced in sec-
tion 2.6.2 and applied earlier. Specifically, we can compute the root-mean-squared error
(RMSE) as

RMSE =
√

1
n

SSR =
√√√√ 1

n

n∑

i=1

ε̂2i . (4.5)

Therefore, RMSE represents the average magnitude of the prediction error for the
regression, and this is what the method of least squares minimizes.

In R, RMSE can be easily calculated by first obtaining the residuals from the
resid() function.

epsilon.hat <- resid(fit) # residuals

sqrt(mean(epsilon.hat^2)) # RMSE

## [1] 0.2642361

The result implies that while the perceived competence score does predict the
election outcome, the prediction is not very accurate, yielding on average a prediction
error of 26 percentage points.

The least squares estimates of intercept and slope parameters are given by

α̂ = Y − β̂X, (4.6)

β̂ =
∑n

i=1(Yi − Y)(Xi − X)∑n
i=1(Xi − X)2

. (4.7)

Recall that the sample means of Y and X are given by Y = 1
n
∑n

i=1 Yi and X =
1
n
∑n

i=1 Xi , respectively. The results imply that the regression line always goes through
the center of the data (X,Y). This is so because substituting x = X into equation (4.2)
and using the expression for α̂ in equation (4.6) yields Ŷ = Y :

Ŷ = (Y − β̂X)︸ ︷︷ ︸
α̂

+β̂X = Y .
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In the above plot, we observe that this is indeed the case. The regression line runs
through the intersection of the vertical and horizontal dotted lines, which represent
the means of X and Y , respectively.

In addition, when the method of least squares is used to estimate the coefficients, the
predictions based on the fitted regression line are accurate on average. More precisely,
the mean of residual ε̂ is zero, as the following algebraic manipulation shows:

mean of ε̂ = 1
n

n∑

i=1

(Yi − α̂ − β̂Xi ) = Y − α̂ − β̂X = 0.

In this equation, the first equality is due to the definition of the residual, the next
equality is obtained by applying the summation for each term in the parentheses, and
the final equality follows from equation (4.6). We emphasize that this is an algebraic
equality and holds for any data set. In other words, a linear regression model always
has zero average prediction error across all data points in the sample, but this does
not necessarily mean that the linear regression model accurately represents the actual
data-generating process.

A common method of estimating the coefficients of the linear regression model is
the method of least squares, which minimizes the sum of squared residuals,

SSR =∑n
i=1 ε̂2i =∑n

i=1(Yi − α̂ − β̂Xi )2.

The mean of residuals is always zero, and the regression line always goes through
the center of data (X,Y) where X and Y are the sample means of X and Y ,
respectively.

It is also important to understand the relationship between the estimated slope of
the regression and the correlation coefficient introduced in section 3.6.2:

β̂ = 1
n

n∑

i=1

(Yi − Y)(Xi − X)√
1
n
∑n

i=1(Yi − Y)2
√

1
n
∑n

i=1(Xi − X)2
×

√
1
n
∑n

i=1(Yi − Y)2
√

1
n
∑n

i=1(Xi − X)2

= correlation of X and Y × standard deviation of Y
standard deviation of X

. (4.8)

The first equality holds because we divide and multiply the right hand side of
equation (4.7) by the standard deviation of Y , i.e.,

√
1
n
∑n

i=1(Yi − Y)2, whereas the
second equality follows from the definitions of correlation and standard deviation (see
equations (3.2) and (2.4), respectively).

The expression for the estimated slope parameter in equation (4.8) has two im-
portant implications. First, a positive (negative) correlation corresponds to a positive
(negative) slope because standard deviations never take a negative value. Second, each
increase of 1 standard deviation in X is associated with an average increase of ρ

standard deviations in Y , where ρ is the correlation between X and Y . For example,
if the correlation is 0.5, then a 1 standard deviation increase in X would result in a 0.5
standard deviation increase in Y . In the current example, the correlation between the
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Figure 4.4. Galton’s Regression Towards Mediocrity. Source: Francis Galton (1886)
“Regression towards mediocrity in hereditary stature.’’ Journal of the Anthropological
Institute of Great Britain and Ireland, vol. 15, pp. 246–263.

perceived competence score and the two-party vote share differential is 0.43, whereas
the standard deviations of X and Y are 0.19 and 0.29, respectively. Thus, an increase
in the perceived competence score of 0.19 is associated with an average increase in the
two-party vote share differential of roughly 13 percentage points (≈ 0.43 × 0.29).

The estimated slope coefficient from a linear regression model equals the ρ

standard deviation unit increase in the outcome variable that is associated with
an increase of 1 standard deviation in the predictor, where ρ is the correlation
between the two variables.

4.2.4 REGRESSION TOWARDS THE MEAN
In his 1886 paper entitled “Regression towards mediocrity in hereditary stature,” a

British scholar, Sir Francis Galton, conducted one of the first regression analyses. He
studied human hereditary stature by examining the relationship between the height of
adult children and the average of their parents’ heights, which Galton called the “mid-
parents’ height.” Galton was the first to present an example of the phenomenon called
regression towards the mean. He summarized this as “When Mid Parents are shorter
(taller) than mediocrity, their Children tend to be taller (shorter) than they.”

Figure 4.4 is taken from the original paper. In this figure, the values indicate
the number of observations and the ellipse represents the data cloud. The “locus of
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vertical tangential points” represents a regression line where the outcome variable is
adult children’s height (horizontal axis) and the predictor is their mid-parents’ height
(vertical axis). Note that the outcome variable is measured on the horizontal axis while
the predictor is on the vertical axis, which is the exact opposite of the current practice
of plotting the outcome variable on the vertical axis. Galton also regressedmid-parents’
heights on the heights of adult children. This regression line is denoted by the “locus
of horizontal tangential points.” The angle of the slope of this regression line, which
Galton calculated to be 2/3, represents the rate of regression from mid-parents to
children.

To demonstrate the regression effect numerically, consider the observations that
have mid-parents’ heights of approximately 71 inches. As we can see from figure 4.4,
there are 24 such observations, represented by those in the second row from the top.
Out of these observations, only 8, or 33% of them, have children who are at least as
tall as their mid-parents. In contrast, focus on the observations whose mid-parents
are about 67 inches and hence shorter than the average height (they are in the second
row from the bottom). Out of 57 such observations, 40 observations, or 70%, have
children whose heights are at least their mid-parents’ height. Galton called this pattern
the “regression towards mediocrity.” Note, however, that as indicated by the positive
slope of the regression line, children whose parents are taller also tend to be taller on
average. We emphasize that as shown in chapter 6 this empirical phenomenon can
be explained by chance alone. Thus, regression towards the mean does not imply that
human heights are converging and everyone will have an identical height in the future!

Regression towards the mean is observed in other contexts as well. Below, we show
another example of this phenomenon, demonstrating that Obama tended to gain fewer
votes in 2012 than in 2008 for the states in which he did well in 2008. Other examples
include test scores where students who perform well in the midterm exam tend not to
do as well in the final exam. An important point is that this decline in performance
may have arisen due to chance rather than to a lack of Obama’s or the students’
efforts.

Regression towards the mean represents an empirical phenomenon where an
observation with a value of the predictor further away from the distribution’s
mean tends to have a value of an outcome variable closer to that mean. This
tendency can be explained by chance alone.

4.2.5 MERGING DATA SETS IN R
We will examine whether or not the US presidential election data exhibit the

regression towards the mean phenomenon. To do this, we use Obama’s vote share
in the 2008 election to predict his vote share in his 2012 reelection. We merge the
2012 election result data set, pres12.csv, into the 2008 election data set. The
variable names and descriptions of the 2012 election result data set are given in
table 4.5.

Merging two data sets can be done in R using the merge() function. The function
takes three main arguments, x, y, and by, where the x and y arguments represent two
data frames to be merged and the by argument indicates the variable name(s) used for
merging. Let’s first look at two data sets we would like to merge.
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Table 4.5. 2012 US Presidential Election Data.

Variable Description

state abbreviated name of the state
Obama Obama’s vote share (percentage)
Romney Romney’s vote share (percentage)
EV number of Electoral College votes for the state

pres12 <- read.csv("pres12.csv") # load 2012 data

## quick look at two data sets

head(pres08)

## state.name state Obama McCain EV margin

## 1 Alabama AL 39 60 9 -21

## 2 Alaska AK 38 59 3 -21

## 3 Arizona AZ 45 54 10 -9

## 4 Arkansas AR 39 59 6 -20

## 5 California CA 61 37 55 24

## 6 Colorado CO 54 45 9 9

head(pres12)

## state Obama Romney EV

## 1 AL 38 61 9

## 2 AK 41 55 3

## 3 AZ 45 54 11

## 4 AR 37 61 6

## 5 CA 60 37 55

## 6 CO 51 46 9

We will use the state name variable state, which is contained in both data sets, to
merge the two data frames.

## merge two data frames

pres <- merge(pres08, pres12, by = "state")

## summarize the merged data frame

summary(pres)

## state state.name Obama.x

## AK : 1 Alabama : 1 Min. :33.00

## AL : 1 Alaska : 1 1st Qu.:43.00

## AR : 1 Arizona : 1 Median :51.00

## AZ : 1 Arkansas : 1 Mean :51.37

## CA : 1 California: 1 3rd Qu.:57.50
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## CO : 1 Colorado : 1 Max. :92.00

## (Other):45 (Other) :45

## McCain EV.x margin

## Min. : 7.00 Min. : 3.00 Min. :-32.000

## 1st Qu.:40.00 1st Qu.: 4.50 1st Qu.:-13.000

## Median :47.00 Median : 8.00 Median : 4.000

## Mean :47.06 Mean :10.55 Mean : 4.314

## 3rd Qu.:56.00 3rd Qu.:11.50 3rd Qu.: 17.500

## Max. :66.00 Max. :55.00 Max. : 85.000

##

## Obama.y Romney EV.y

## Min. :25.00 Min. : 7.00 Min. : 3.00

## 1st Qu.:40.50 1st Qu.:41.00 1st Qu.: 4.50

## Median :51.00 Median :48.00 Median : 8.00

## Mean :49.06 Mean :49.04 Mean :10.55

## 3rd Qu.:56.00 3rd Qu.:58.00 3rd Qu.:11.50

## Max. :91.00 Max. :73.00 Max. :55.00

##

Note that if the data frames have variables with identical names, i.e., Obama and EV,
then the merged data frame will append .x and .y to each name, thereby attributing
each variable to its original data frame. The variable used for merging must exist in
both data frames. This variable may have the same name in both data frames, as in the
above code chunk, but if the variable happens to have different names, then we can
use the by.x and by.y arguments to specify the exact variable names used in each
data frame. By default, the merged data frame keeps the name of the variable from data
frame x, which is specified by the by.x argument. An example code chunk is given
here.

## change the variable name for illustration

names(pres12)[1] <- "state.abb"

## merging data sets using the variables of different names

pres <- merge(pres08, pres12, by.x = "state", by.y = "state.abb")

summary(pres)

## state state.name Obama.x

## AK : 1 Alabama : 1 Min. :33.00

## AL : 1 Alaska : 1 1st Qu.:43.00

## AR : 1 Arizona : 1 Median :51.00

## AZ : 1 Arkansas : 1 Mean :51.37

## CA : 1 California: 1 3rd Qu.:57.50

## CO : 1 Colorado : 1 Max. :92.00

## (Other):45 (Other) :45

## McCain EV.x margin

## Min. : 7.00 Min. : 3.00 Min. :-32.000
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## 1st Qu.:40.00 1st Qu.: 4.50 1st Qu.:-13.000

## Median :47.00 Median : 8.00 Median : 4.000

## Mean :47.06 Mean :10.55 Mean : 4.314

## 3rd Qu.:56.00 3rd Qu.:11.50 3rd Qu.: 17.500

## Max. :66.00 Max. :55.00 Max. : 85.000

##

## Obama.y Romney EV.y

## Min. :25.00 Min. : 7.00 Min. : 3.00

## 1st Qu.:40.50 1st Qu.:41.00 1st Qu.: 4.50

## Median :51.00 Median :48.00 Median : 8.00

## Mean :49.06 Mean :49.04 Mean :10.55

## 3rd Qu.:56.00 3rd Qu.:58.00 3rd Qu.:11.50

## Max. :91.00 Max. :73.00 Max. :55.00

##

An alternative way of combining two data frames is the cbind() function, which
enables column-binding of multiple data frames. (As a side note, the rbind() func-
tion performs row-binding of multiple data frames by stacking one below another.)
But sometimes problematically, the cbind() function assumes the proper sorting
of data frames such that corresponding observations appear in the same row of the
data frames. In our current application, each state must appear in the same row of the
two data frames. The merge() function, on the other hand, appropriately sorts the
data frames according to the variable used for merging. Another disadvantage of the
cbind() function is that it preserves all columns in both data frames even when they
represent the same variable, containing identical information.

The code chunk below illustrates these two problems. The resulting merged data
frame keeps all variables from both data frames, and more importantly, the merged
data frame has incorrect information for the District of Columbia (DC) and Delaware
(DE) because their order is different in the two original data frames. In contrast, the
merge() function will sort the second data frame, pres12, appropriately to match
with the first data frame, pres08.

## cbinding two data frames

pres1 <- cbind(pres08, pres12)

## this shows all variables are kept

summary(pres1)

## state.name state Obama

## Alabama : 1 AK : 1 Min. :33.00

## Alaska : 1 AL : 1 1st Qu.:43.00

## Arizona : 1 AR : 1 Median :51.00

## Arkansas : 1 AZ : 1 Mean :51.37

## California: 1 CA : 1 3rd Qu.:57.50

## Colorado : 1 CO : 1 Max. :92.00

## (Other) :45 (Other):45
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## McCain EV margin

## Min. : 7.00 Min. : 3.00 Min. :-32.000

## 1st Qu.:40.00 1st Qu.: 4.50 1st Qu.:-13.000

## Median :47.00 Median : 8.00 Median : 4.000

## Mean :47.06 Mean :10.55 Mean : 4.314

## 3rd Qu.:56.00 3rd Qu.:11.50 3rd Qu.: 17.500

## Max. :66.00 Max. :55.00 Max. : 85.000

##

## state.abb Obama Romney

## AK : 1 Min. :25.00 Min. : 7.00

## AL : 1 1st Qu.:40.50 1st Qu.:41.00

## AR : 1 Median :51.00 Median :48.00

## AZ : 1 Mean :49.06 Mean :49.04

## CA : 1 3rd Qu.:56.00 3rd Qu.:58.00

## CO : 1 Max. :91.00 Max. :73.00

## (Other):45

## EV

## Min. : 3.00

## 1st Qu.: 4.50

## Median : 8.00

## Mean :10.55

## 3rd Qu.:11.50

## Max. :55.00

##

## DC and DE are flipped in this alternative approach

pres1[8:9, ]

## state.name state Obama McCain EV margin state.abb Obama

## 8 D.C. DC 92 7 3 85 DE 59

## 9 Delaware DE 62 37 3 25 DC 91

## Romney EV

## 8 40 3

## 9 7 3

## merge() does not have this problem

pres[8:9, ]

## state state.name Obama.x McCain EV.x margin Obama.y

## 8 DC D.C. 92 7 3 85 91

## 9 DE Delaware 62 37 3 25 59

## Romney EV.y

## 8 7 3

## 9 40 3

Using the merged data frame, we investigate whether or not the regression towards
the mean phenomenon exists in the US presidential election data. Given the recent
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trend of increasing polarization in American politics (see section 3.5), we standardize
vote shares across elections by computing their z-scores so that we can measure
Obama’s electoral performance in each state relative to his average performance of
that year (see section 3.6.2). That is, we subtract the mean from Obama’s vote share
in each election and then divide it by the standard deviation. This can be done easily
by using the scale() function. We perform this transformation because technically,
the regression towards the mean phenomenon holds when both the outcome and
explanatory variables are standardized.

pres$Obama2008.z <- scale(pres$Obama.x)

pres$Obama2012.z <- scale(pres$Obama.y)

We regress Obama’s 2012 standardized vote share on his 2008 standardized vote
share. As expected, we observe a strong positive linear relationship between the two.
Obama tended to receive more votes in 2012 from states that gave him more votes in
2008. Note that when we standardize both the outcome variable and the predictor, the
estimated intercept becomes zero. This is because the estimated intercept is given by
α̂ = Y − β̂X (see equation (4.6)) and after standardizing, the sample means of both
variables, Y and X , are zero. As shown below, in this case, R estimates the intercept to
be essentially zero. It is also possible to fit the model without an intercept by including
-1 in the formula.

## intercept is estimated as essentially zero

fit1 <- lm(Obama2012.z ~ Obama2008.z, data = pres)

fit1

##

## Call:

## lm(formula = Obama2012.z ~ Obama2008.z, data = pres)

##

## Coefficients:

## (Intercept) Obama2008.z

## -3.521e-17 9.834e-01

## regression without an intercept; estimated slope is identical

fit1 <- lm(Obama2012.z ~ -1 + Obama2008.z, data = pres)

fit1

##

## Call:

## lm(formula = Obama2012.z ~ -1 + Obama2008.z, data = pres)

##

## Coefficients:

## Obama2008.z

## 0.9834
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Here, we plot the fitted regression line as well as the data points where we observe a
strong linear relationship.

plot(pres$Obama2008.z, pres$Obama2012.z, xlim = c(-4, 4), ylim = c(-4, 4),

xlab = "Obama’s standardized vote share in 2008",

ylab = "Obama’s standardized vote share in 2012")

abline(fit1) # draw a regression line
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Now we compute the proportion of states where Obama received a greater share of
standardized votes in 2012 than he did in 2008.We do so using first the bottom quartile
of Obama’s 2008 (standardized) vote share, then the top quartile. If the regression
towards the mean phenomenon exists, then this proportion should be greater for the
states in the bottom quartile than those in the top quartile.

## bottom quartile

mean((pres$Obama2012.z >

pres$Obama2008.z)[pres$Obama2008.z

<= quantile(pres$Obama2008.z, 0.25)])

## [1] 0.5714286

## top quartile

mean((pres$Obama2012.z >

pres$Obama2008.z)[pres$Obama2008.z

>= quantile(pres$Obama2008.z, 0.75)])

## [1] 0.4615385



156 Chapter 4: Prediction

In the above code, we use the quantile() function to compute the top and bottom
quartiles. Then, a logical vector where TRUE (FALSE) indicates Obama’s 2012 vote
share being greater than (less than or equal to) his 2008 vote share is subsetted by
another logical vector. This second logical vector, inside the square brackets, indicates
whether Obama’s 2008 vote share for a state is in the bottom or top quartile. The result
clearly shows the regression towards the mean phenomenon. Obama fared better in
2012 than in 2008 in 57% of bottom quartile states, where he failed most in 2008. In
contrast, Obama fared better in 2012 only among 46% of the top quartile states, where
he succeeded most in 2008.

4.2.6 MODEL FIT
Model fit measures how well the model fits the data, i.e., how accurately the

model predicts observations. We can assess model fit by looking at the coefficient of
determination, or R2, which represents the proportion of total variation in the outcome
variable explained by the model. To define R2, we first introduce the total sum of
squares or TSS, which is defined as

TSS =
n∑

i=1

(Yi − Y)2.

The TSS represents the total variation of the outcome variable based on the square
distance from its mean. Now, we can define R2 as the proportion of TSS explained by
the predictor X :

R2 = TSS − SSR

TSS
= 1 − SSR

TSS
.

The SSR or sum of squared residuals is defined in equation (4.4) and represents the
residual variation of Y left unexplained by X . The value of R2 ranges from 0 (when
the correlation between the outcome and the predictor is 0) to 1 (when the correlation
is 1), indicating how well the linear model fits the data at hand.

The coefficient of determination is a measure of model fit and represents the
proportion of variation in the outcome variable explained by the predictor. It is
defined as one minus the ratio of the sum of squared residuals (SSR) to the total
sum of squares (TSS).

As an illustrative example, consider the problem of predicting the 2000 US election
results in Florida using the 1996 US election results from the same state at the county
level. In Florida, there are 68 counties, and the CSV file florida.csv contains the
number of votes cast for each candidate in those two elections. Table 4.6 displays the
names and descriptions of variables in this data file. We focus on libertarian candidates
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Table 4.6. 1996 and 2000 US Presidential Election Data for Florida Counties.

Variable Description

county county name
Clinton96 Clinton’s votes in 1996
Dole96 Dole’s votes in 1996
Perot96 Perot’s votes in 1996
Bush00 Bush’s votes in 2000
Gore00 Gore’s votes in 2000
Buchanan00 Buchanan’s votes in 2000

Ross Perot in 1996 and Pat Buchanan in 2000, using the votes for the former to predict
the votes for the latter. We then compute R2 from this regression model by first
computing TSS and then SSR. Recall that the resid() function extracts the vector
of residuals from the regression output.

florida <- read.csv("florida.csv")

## regress Buchanan’s 2000 votes on Perot’s 1996 votes

fit2 <- lm(Buchanan00 ~ Perot96, data = florida)

fit2

##

## Call:

## lm(formula = Buchanan00 ~ Perot96, data = florida)

##

## Coefficients:

## (Intercept) Perot96

## 1.34575 0.03592

## compute TSS (total sum of squares) and SSR (sum of squared residuals)

TSS2 <- sum((florida$Buchanan00 - mean(florida$Buchanan00))^2)

SSR2 <- sum(resid(fit2)^2)

## coefficient of determination

(TSS2 - SSR2) / TSS2

## [1] 0.5130333

The result shows that 51% of the variation of Buchanan’s 2000 votes can be explained
by Perot’s 1996 votes.

We turn this calculation into a function so that we can easily compute the coefficient
of determination for different regression models (see section 1.3.4). The function takes
as input the output from the lm() function, which is a list object containing various
elements (see section 3.7.2). The value of the outcome variable can be recomputed from
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the regression output object by summing the fitted value, which can be obtained using
the fitted() function, and the residual for each observation.

R2 <- function(fit) {

resid <- resid(fit) # residuals

y <- fitted(fit) + resid # outcome variable

TSS <- sum((y - mean(y))^2)

SSR <- sum(resid^2)

R2 <- (TSS - SSR) / TSS

return(R2)

}

R2(fit2)

## [1] 0.5130333

Alternatively, we can obtain the value of R2 by applying the summary() function
to the output from the lm() function (see also section 7.3).

## built-in R function

fit2summary <- summary(fit2)

fit2summary$r.squared

## [1] 0.5130333

The resulting coefficient of determination appears relatively low given that we are
predicting votes for a candidate from the same party using the previous election result.
Earlier, we saw that Obama’s vote shares at the state level are strongly correlated
between the 2008 and 2012 elections. We can compute R2 for that regression where
the corresponding output object is fit1, which represents the output of the state-level
regression. The coefficient of determination for the Florida regression proves to be
much lower than that for the state-level regression.

R2(fit1)

## [1] 0.9671579

Given this unusually poor performance, it is useful to more closely inspect the
residuals from the Florida regression. To do this, we create a residual plot where
residuals are plotted against fitted values.

plot(fitted(fit2), resid(fit2), xlim = c(0, 1500), ylim = c(-750, 2500),

xlab = "Fitted values", ylab = "Residuals")

abline(h = 0)
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We observe an extremely large residual or outlier, where in the 2000 election,
Buchanan received 2000 votes, substantially more than expected. The next line of
code shows that this observation represents Palm Beach county. This can be seen by
extracting the county name whose residual equals the maximum value of residuals.

florida$county[resid(fit2) == max(resid(fit2))]

## [1] PalmBeach

## 67 Levels: Alachua Baker Bay Bradford Brevard ... Washington

It turns out that in Palm Beach county, the so-called butterfly ballot was used for this
election. A picture of this ballot is shown in figure 4.5. Voters are supposed to punch a
hole that corresponds to the candidate they would like to vote for. However, as can be
seen in the picture, the ballot is quite confusing. It appears that many supporters of Al
Gore in this county mistakenly voted for Buchanan by punching the second hole from
the top instead of the third hole. As mentioned at the beginning of the chapter, in the
2000 election, George Bush was elected to office by winning Florida with a razor-thin
margin of 537 votes even though Gore won over half a million votes more than Bush in
the entire country. It is widely believed that voting irregularities in Palm Beach county,
as evident in the residual plot, cost Gore the presidency.

We now fit the same model without Palm Beach county. Later, we will see whether
this removal improves the model fit, by comparing residual plots and regression lines
with Palm Beach against those without it. We begin by computing the coefficient of
determination without Palm Beach.

## data without Palm Beach

florida.pb <- subset(florida, subset = (county != "PalmBeach"))
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Figure 4.5. Butterfly Ballot in Palm Beach County.

fit3 <- lm(Buchanan00 ~ Perot96, data = florida.pb)

fit3

##

## Call:

## lm(formula = Buchanan00 ~ Perot96, data = florida.pb)

##

## Coefficients:

## (Intercept) Perot96

## 45.84193 0.02435

## R-squared or coefficient of determination

R2(fit3)

## [1] 0.8511675

Without Palm Beach, the coefficient of determination dramatically increases from
0.51 to 0.85. The improvement in model fit can also be easily seen through the residual
plot as well as the scatter plot with regression lines. We find that the regression line
is influenced by Palm Beach—removing it shifts the regression line considerably. The
new regression line fits the remaining observations better.

## residual plot

plot(fitted(fit3), resid(fit3), xlim = c(0, 1500), ylim = c(-750, 2500),

xlab = "Fitted values", ylab = "Residuals",

main = "Residual plot without Palm Beach")

abline(h = 0) # horizontal line at 0



4.3 Regression and Causation 161

plot(florida$Perot96, florida$Buchanan00, xlab = "Perot’s votes in 1996",

ylab = "Buchanan’s votes in 2000")

abline(fit2, lty = "dashed") # regression with Palm Beach

abline(fit3) # regression without Palm Beach

text(30000, 3250, "Palm Beach")

text(30000, 1500, "regression\n with Palm Beach")

text(30000, 400, "regression\n without Palm Beach")
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Finally, it is important to emphasize that the model fit considered in this sec-
tion is based on in-sample predictions rather than out-of-sample predictions. That
is, model fit statistics, such as the coefficient of determination, describe how well
one’s model fits the sample at hand. If tailored too closely to a particular sample,
which is called overfitting, the model may make less accurate predictions in another
sample. In cases where we seek a general model that can be applied to other data,
we need to be careful to avoid overfitting the model to a particular sample. In
section 4.3.2, we will describe one way to adjust R2 in order to reduce the possibility of
overfitting.

4.3 Regression and Causation

Regression is a primary tool for making predictions in social science research. How
can regression be used to draw causal inference? As we discussed in chapter 2, causal
inference requires the prediction of counterfactual outcomes. For example, for units
who received a treatment, we wish to predict the values of the outcome variable that
would result without the treatment. Under certain assumptions, regression models can
be used to predict counterfactual outcomes. We must be careful, however, because
association, which can be quantified through regression, does not necessarily imply
causation.
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Table 4.7. Women as Policy Makers Data.

Variable Description

GP identifier for the Gram Panchayat (GP)
village identifier for each village
reserved binary variable indicating whether the GP was reserved

for women leaders or not
female binary variable indicating whether the GP had a female

leader or not
irrigation variable measuring the number of new or repaired irrigation

facilities in the village since the reserve policy started
water variable measuring the number of new or repaired

drinking water facilities in the village since the
reservation policy started

4.3.1 RANDOMIZED EXPERIMENTS
Our running example is a study that examines the causal effects of having female

politicians in government on policy outcomes.5 Do women promote different policies
than men? To answer this question, it is not sufficient to simply compare policy
outcomes between districts that elect some female politicians and those that elect only
male politicians. This is because these two types of districts may differ in terms of many
factors other than having female politicians. For example, if liberal districts may be
more likely to elect female politicians, it is not clear whether policy differences can be
attributed to ideology or politician’s gender.

To overcome this potential confounding problem, the authors of the study took
advantage of a randomized policy experiment in India where, since the mid-1990s,
one-third of village council heads have been randomly reserved for female politicians.
The CSV data set women.csv contains a subset of this data from West Bengal. The
policy was implemented at the level of government called Gram Panchayat or GP. Each
GP contains many villages. For this study, two villages were selected at random within
each GP for detailed data collection. Table 4.7 shows the names and descriptions of the
variables in this data set. Each observation in the data set represents a village and there
are two villages associated with each GP.

We first check whether or not the reservation policy was properly implemented by
computing the proportions of female politicians elected for the reserved seats as well
as the unreserved ones. Since each GP has the same number of villages, we can simply
compute the average across villages without creating a new data set at the GP level. For
the reserved seats, this proportion should be equal to 1.

5 This section is based on Raghabendra Chattopadhyay and Esther Duflo (2004) “Women as policy makers:
Evidence from a randomized policy experiment in India.” Econometrica, vol. 72, no. 5, pp. 1409–1443.
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women <- read.csv("women.csv")

## proportion of female politicians in reserved GP vs. unreserved GP

mean(women$female[women$reserved == 1])

## [1] 1

mean(women$female[women$reserved == 0])

## [1] 0.07476636

It appears that the reservation policy has been followed. Every GP that was supposed
to reserve a council position for women actually elected at least one female politician.
In contrast, 93% of the GPs to which the reservation policy was not applicable had
no female representative. Following what we learned in chapter 2, we can compare
the mean policy outcomes between the villages in the reserved GPs and those in the
unreserved GPs. We hypothesize that female politicians are more likely to support
policies that female voters want. The researchers found that more women complain
about the quality of drinking water than men, who more frequently complain about
irrigation. We estimate the average causal effects of the reservation policy on the
number of new or repaired irrigation systems and drinking water facilities in the
villages since the policy was implemented. We use the difference-in-means estimator
as in section 2.4.

## drinking water facilities

mean(women$water[women$reserved == 1]) -

mean(women$water[women$reserved == 0])

## [1] 9.252423

## irrigation facilities

mean(women$irrigation[women$reserved == 1]) -

mean(women$irrigation[women$reserved == 0])

## [1] -0.3693319

We find that the reservation policy increased the number of drinking water
facilities in a GP on average by about 9 (new or repaired), whereas the policy
had little effect on irrigation systems. This finding is consistent with the aforemen-
tioned hypothesis that female politicians tend to represent the interests of female
voters.

How can we use regression to analyze the data from randomized experiments like
this one? It turns out that regressing an outcome variable on a treatment variable yields
a slope coefficient identical to the difference in average outcomes between the two
groups. In addition, the resulting intercept corresponds to the average outcome among
the control units. More generally, when the predictor X is binary, taking a value of
either 0 or 1, the linear model defined in equation (4.1) yields the estimated coefficients
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of the following expressions:

α̂ = 1
n0

n∑

i=1

(1 − Xi )Yi
︸ ︷︷ ︸

mean outcome among the control

,

β̂ = 1
n1

n∑

i=1

XiYi
︸ ︷︷ ︸

mean outcome among the treated

− 1
n0

n∑

i=1

(1 − Xi )Yi
︸ ︷︷ ︸

mean outcome among the control

.

In this equation, n1 =∑n
i=1 Xi is the size of the treatment group and n0 = n−n1 is the

size of the control group. Thus, β̂ can be interpreted as the estimated average treatment
effect.

Using our experimental data, we confirm this numerical equivalence between
regression coefficients and average outcomes. That is, we observe that the estimated
slope coefficient is equal to the corresponding difference-in-means estimator.

lm(water ~ reserved, data = women)

##

## Call:

## lm(formula = water ~ reserved, data = women)

##

## Coefficients:

## (Intercept) reserved

## 14.738 9.252

lm(irrigation ~ reserved, data = women)

##

## Call:

## lm(formula = irrigation ~ reserved, data = women)

##

## Coefficients:

## (Intercept) reserved

## 3.3879 -0.3693

We can directly connect the potential outcomes covered in chapter 2 to the
regression model:

Y(X) = α + βX + ε.

Since the regression model predicts the average outcome given a value of the predictor,
the estimated average treatment effect equals the estimated slope coefficient when X is
binary. Recall that β̂ represents the estimated change in Y when X is increased by one
unit. Then, we have Ŷ(1) − Ŷ(0) = (α̂ + β̂) − α̂ = β̂ , while the estimated average
outcome for the control group is equal to the estimated intercept, i.e., Ŷ(0) = α̂. Thus,
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the linear regression model provides an alternative, but numerically equivalent, way to
analyze experimental data in this setting.

When applied to experimental data with a single, binary treatment, the estimated
slope coefficient of the linear regressionmodel can be interpreted as an estimate of
average treatment effect and is numerically equivalent to the difference-in-means
estimator. The estimated intercept, on the other hand, is equal to the estimated
average outcome under the control condition. The randomization of treatment
assignment permits this causal interpretation of association identified under a
linear regression model.

4.3.2 REGRESSION WITH MULTIPLE PREDICTORS
So far, we have included only one predictor in the linear regressionmodel. However,

a regression model can have more than one predictor. In general, a linear regression
model with multiple predictors is defined as

Y = α + β1X1 + β2X2 + · · · + βp Xp + ε.

In this model, α is the intercept, β j is the coefficient for predictor X j , ε is an error
term, and p is the number of predictors and can be greater than 1. The interpretation
of each coefficient β j is the amount of change in the outcome variable associated with
a one-unit increase in the corresponding predictor X j when all other predictors are
held constant or so-called ceteris paribus. Therefore, linear regression with multiple
predictors enables researchers to assess the impact of each predictor.

The least squares method, as described in section 4.2.3, can be used to estimate the
model parameters. That is, we choose the values of (α̂, β̂1, . . . , β̂p) such that the sum
of squared residuals (SSR) is minimized. The SSR is defined as

SSR =
n∑

i=1

ε̂2i =
n∑

i=1

(Yi − α̂ − β̂1Xi1 − β̂2Xi2 − · · · − β̂p Xip)2.

In the equation, ε̂i is the residual and Xi j is the value of the j th predictor for the i th
observation. Recall that the residual is defined as the difference between the observed
response Y and its predicted or fitted value Ŷ = α̂ + β̂1X1 + β̂2X2 + · · · + β̂Xp .

The validity of predictions based on a linear regression model critically rests on the
assumption of linearity. The method of least squares always gives us the line that “best
fits” the data in the sense of minimizing the SSR. However, this does not necessarily
mean that the linear model is appropriate. While a comprehensive treatment of testing
and relaxing this assumption is beyond the scope of this book, we must not forget that
any model or method requires an assumption, and linear regression is no exception.

As an example of linear regression models with multiple predictors, we consider the
randomized experiment on social pressure and turnout introduced in section 2.4.2.
In that study, registered voters were randomly assigned to one of the four groups.
We can fit a linear regression model, in which group assignment is used to predict
turnout. Fitting the linear regression model is done via the lm() function as before.
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One can add more than one predictor by simply using the + operator, for example,
lm(y ~ x1 + x2 + x3). In this example, since the messages variable is a factor,
the lm() function automatically creates a set of indicator or dummy variables, each of
which is equal to 1 if a voter is assigned to the corresponding group. These indicator
variables will be used for computation but will not be saved in the data frame. The
model includes all but the variable corresponding to the base level. The base level of
a factor variable is the level displayed first when we apply the levels() function,
which lists levels in alphabetical order. The other values of a factor variable are defined
in relation to this base level value.

social <- read.csv("social.csv")

levels(social$messages) # base level is “Civic Duty”

## [1] "Civic Duty" "Control" "Hawthorne" "Neighbors"

Now we fit the linear regression model using this factor variable.

fit <- lm(primary2008 ~ messages, data = social)

fit

##

## Call:

## lm(formula = primary2008 ~ messages, data = social)

##

## Coefficients:

## (Intercept) messagesControl messagesHawthorne

## 0.314538 -0.017899 0.007837

## messagesNeighbors

## 0.063411

Alternatively, one can create an indicator variable for each group and then specify
the regression model using them. The results are identical to those given above.

## create indicator variables

social$Control <- ifelse(social$messages == "Control", 1, 0)

social$Hawthorne <- ifelse(social$messages == "Hawthorne", 1, 0)

social$Neighbors <- ifelse(social$messages == "Neighbors", 1, 0)

## fit the same regression as above by directly using indicator variables

lm(primary2008 ~ Control + Hawthorne + Neighbors, data = social)

Mathematically, the linear regression model we just fit is given by

Y = α + β1 Control + β2 Hawthorne + β3 Neighbors + ε.

In this model, each predictor is an indicator variable for the corresponding group.
Since the base level of the messages variable is "Civic Duty", the lm() function
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excludes the corresponding indicator variable. Using the fitted model, we can predict
the average outcome, which in this case is the average proportion of voters who turned
out. For example, under the Control condition, the average outcome is predicted to
be α̂ + β̂1 = 0.315 + (−0.018) = 0.297 or 29.7%. Similarly, for the Neighbors group,
the predicted average outcome is α̂ + β̂3 = 0.315 + 0.063 = 0.378.

The predicted average outcome can be obtained using the predict() function.
This function, like the fitted() function, takes the output from the lm() function
and computes predicted values. However, unlike the fitted() function, which
computes predicted values for the sample used to fit the model, the predict()
function can take a new data frame as the newdata argument and make predictions
for each observation in this data frame. The new data frame’s variables must match
the predictors of the fitted linear model, though they can have different values. In the
current application, we create a new data frame using the data.frame() function.
The resulting data frame contains the same variable messages as the predictor of the
model but only four observations, each of which has one of the unique values of the
original messages variable. We use the unique() function to extract these unique
values and return them in the order of their first occurrence.

## create a data frame with unique values of “messages”

unique.messages <- data.frame(messages = unique(social$messages))

unique.messages

## messages

## 1 Civic Duty

## 2 Hawthorne

## 3 Control

## 4 Neighbors

## make prediction for each observation from this new data frame

predict(fit, newdata = unique.messages)

## 1 2 3 4

## 0.3145377 0.3223746 0.2966383 0.3779482

As we saw in the case of a linear regression model with a single, binary predictor
(see section 4.3.1), the predicted average outcome for each treatment condition equals
the sample average within the corresponding subset of the data.

## sample average

tapply(social$primary2008, social$messages, mean)

## Civic Duty Control Hawthorne Neighbors

## 0.3145377 0.2966383 0.3223746 0.3779482

To make the output of linear regression more interpretable, we can remove an
intercept and use all four indicator variables (rather than removing the indicator
variable for the base level in order to include a common intercept). This alternative
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specification enables us to directly obtain the average outcome within each group as
a coefficient for the corresponding indicator variable. To omit the intercept in linear
regression, we simply use -1 in the formula. The following code chunk illustrates this.

## linear regression without intercept

fit.noint <- lm(primary2008 ~ -1 + messages, data = social)

fit.noint

##

## Call:

## lm(formula = primary2008 ~ -1 + messages, data = social)

##

## Coefficients:

## messagesCivic Duty messagesControl messagesHawthorne

## 0.3145 0.2966 0.3224

## messagesNeighbors

## 0.3779

Each coefficient above represents the average outcome for a given group. As a result,
we can estimate an average treatment effect relative to the control for each treatment
condition (Civic Duty, Hawthorne, or Neighbors) by calculating that treatment
condition’s coefficient minus the coefficient for the control group, which is the baseline
group under this model with no intercept. The difference in the estimated causal effects
between any two groups equals the difference between the corresponding coefficients,
whether one uses the model with no intercept or the original model. Therefore, the
average effect of the Neighbors treatment (relative to the Control condition) equals
0.378 − 0.297 in the model with no intercept, or 0.063 − (−0.018) in the original
model, either of which equals 0.081 or 8.1 percentage points. As was the case before,
the same estimate of average causal effect can be obtained in two ways—through linear
regression with a factor treatment variable or the difference-in-means estimator.

## estimated average effect of “Neighbors” condition

coef(fit)["messagesNeighbors"] - coef(fit)["messagesControl"]

## messagesNeighbors

## 0.08130991

## difference-in-means

mean(social$primary2008[social$messages == "Neighbors"]) -

mean(social$primary2008[social$messages == "Control"])

## [1] 0.08130991

Finally, we can compute the coefficient of determination or R2 as in section 4.2.6.
When there are multiple predictors, however, we often compute the adjusted R2 with
the so-called degrees of freedom correction that accounts for the number of predictors.
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Roughly speaking, the degrees of freedom refers to the number of observations that are
“free to vary,” which is often represented by the total number of observationsminus the
number of parameters to be estimated. In the current setting, the degrees of freedom
equals n − p − 1 = n − (p + 1) because n is the number of observations and p + 1
is the number of coefficients to be estimated, i.e., a coefficient for each of p predictors
plus an intercept.

Since one can always increase the (unadjusted) R2 by including an additional
predictor (which always decreases SSR), the degrees of freedom correction adjusts R2

downwards as more predictors are included in the model. The formula of the adjusted
R2 is given by

adjusted R2 = 1 − SSR/(n − p − 1)
TSS/(n − 1)

.

SSR is divided by the number of observations nminus the number of coefficients to be
estimated (p + 1). TSS is divided by (n − 1) since TSS estimates only one parameter,
the mean of the outcome variable or Y . As in section 4.2.6, we create a function that
computes the adjusted R2.

## adjusted R-squared

adjR2 <- function(fit) {

resid <- resid(fit) # residuals

y <- fitted(fit) + resid # outcome

n <- length(y)

TSS.adj <- sum((y - mean(y))^2) / (n - 1)

SSR.adj <- sum(resid^2) / (n - length(coef(fit)))

R2.adj <- 1 - SSR.adj / TSS.adj

return(R2.adj)

}

adjR2(fit)

## [1] 0.003272788

R2(fit) # unadjusted R-squared calculation

## [1] 0.003282564

In this case, the difference between unadjusted and adjusted R2 is small because the
number of observations is large relative to the number of coefficients. Alternatively, we
can obtain both adjusted and unadjusted R2 by applying the summary() function to
output from the lm() function (see also section 7.3).

fitsummary <- summary(fit)

fitsummary$adj.r.squared

## [1] 0.003272788
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The linear regression model with multiple predictors is defined as

Y = α + β1X1 + β2X2 + · · · + βp Xp + ε,

where the coefficient β j represents the increase in the average outcome associated
with a one-unit increase in X j while holding the other variables constant. The
coefficients are estimated by minimizing the sum of squared residuals. The
degrees of freedom adjustment is often made when computing the coefficient
of determination.

4.3.3 HETEROGENOUS TREATMENT EFFECTS
When applied to randomized experiments, linear regression with multiple pre-

dictors can also be helpful for exploring heterogenous treatment effects. Even if the
average treatment effect is positive, for example, the same treatment may affect
some individuals in a negative way. Identifying the characteristics associated with the
direction and magnitude of the treatment effect is essential in determining who should
receive the treatment. In the current application, we might hypothesize that the social
pressure treatment would barely affect those who vote infrequently. In contrast, they
may be the ones who would be most affected by such treatment. To illustrate the
analysis of heterogenous treatment effects, we examine the difference in the estimated
average causal effect of the Neighborsmessage between those who voted in the 2004
primary election and those who did not. We can do this by subsetting the data and then
estimating the average treatment effect within each subset. Finally, we compare these
two estimated average treatment effects.

## average treatment effect (ATE) among those who voted in 2004 primary

social.voter <- subset(social, primary2004 == 1)

ate.voter <-

mean(social.voter$primary2008[social.voter$messages == "Neighbors"]) -

mean(social.voter$primary2008[social.voter$messages == "Control"])

ate.voter

## [1] 0.09652525

## average effect among those who did not vote

social.nonvoter <- subset(social, primary2004 == 0)

ate.nonvoter <-

mean(social.nonvoter$primary2008[social.nonvoter$messages == "Neighbors"]) -

mean(social.nonvoter$primary2008[social.nonvoter$messages == "Control"])

ate.nonvoter

## [1] 0.06929617
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## difference

ate.voter - ate.nonvoter

## [1] 0.02722908

We find that those who voted in the 2004 primary election have the estimated
average effect of 9.7 percentage points, which is approximately 2.7 percentage points
greater than those who did not vote in the election. This implies that the Neighbors
message affects those who voted in the 2004 primary election more than those who did
not.

The same analysis can be carried out through the use of linear regression with an
interaction effect between the treatment variable Neighbors and the covariate of
interest primary2004. In our application, the model is given by

Y = α + β1 primary2004 + β2 Neighbors + β3 (primary2004 × Neighbors) + ε.

(4.9)

The final predictor is the product of two indicator variables, primary2004×Neighbors,
which is equal to 1 if and only if an individual voted in the 2004 primary election
(primary2004 = 1) and received the Neighbors treatment (Neighbors = 1).

Thus, according to the model, among the voters who turned out in the 2004 primary
election (primary2004 = 1), the average effect of the Neighbors message equals
β2 + β3, whereas the same effect for those who did not vote in the 2004 election
(primary2004 = 0) equals β2. Thus, the coefficient for the interaction term β3
represents the additional average treatment effect the first group of voters receive
relative to the second group.

More generally, an example of the linear regression model with an interaction
term is

Y = α + β1X1 + β2X2 + β3X1X2 + ε,

where the coefficient for the interaction term β3 represents how the effect of X1
depends on X2 (or vice versa). To see this, set X2 = x2 and then compute the predicted
value when X1 = x1. This is given by α̂ + β̂1x1 + β̂2x2 + β̂3x1x2. Now, compare this
with the predicted value when X1 is increased by one unit, i.e., X1 = x1 +1. Under this
scenario, the predicted value is α̂ + β̂1(x1 +1)+ β̂2x2 + β̂3(x1 +1)x2. Then, subtracting
the previous predicted value from this one, we obtain the following expression for how
the change in the average outcome associated with a one-unit increase in X1 depends
on the value of X2:

β̂1 + β̂3x2.

This is another linear equation. The intercept β1 represents the increase in the average
outcome associated with a one-unit increase in X1 when X2 = 0. Then, each one-unit
increase in X2 has the effect of further increasing X1 by the slope β̂3.
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An example of a linear regression model with an interaction term is

Y = α + β1X1 + β2X2 + β3X1X2 + ε.

The model assumes that the effect of X1 linearly depends on X2. That is, as we
increase X2 by one unit, the change in the average outcome associated with a one-
unit increase of X1 goes up by β3.

In R, an interaction term can be represented by a colon : with the syntax
x1:x2 producing an interaction term between the two variables x1 and x2. We
illustrate the use of interaction terms by focusing on the Neighbors and Control
groups.

## subset Neighbors and Control groups

social.neighbor <- subset(social, (messages == "Control") |

(messages == "Neighbors"))

## standard way to generate main and interaction effects

fit.int <- lm(primary2008 ~ primary2004 + messages + primary2004:messages,

data = social.neighbor)

fit.int

##

## Call:

## lm(formula = primary2008 ~ primary2004 + messages + primary2004:messages,

## data = social.neighbor)

##

## Coefficients:

## (Intercept)

## 0.23711

## primary2004

## 0.14870

## messagesNeighbors

## 0.06930

## primary2004:messagesNeighbors

## 0.02723

Since the Control group is the baseline condition, the slope coefficients are esti-
mated only for the Neighbors condition and its interaction with the primary2004
variable.

Alternatively, an asterisk * generates twomain effect terms as well as one interaction
effect term. That is, the syntax x1*x2 produces x1, x2, and x1:x2. In most appli-
cations, one should include the corresponding main effects when the model has an
interaction term. The same regression model as above can be fitted using the following
syntax.
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lm(primary2008 ~ primary2004 * messages, data = social.neighbor)

To interpret each estimated coefficient, it is again helpful to consider the predicted
average outcome. Among those who voted in the 2004 primary election, the estimated
average effect of the Neighbors treatment can be written as the difference in the
estimated average outcome between the treatment and control groups. In terms of
model parameters, this difference is equal to (α̂ + β̂1 + β̂2 + β̂3)− (α̂ + β̂1) = β̂2 + β̂3,
where β̂2 and β̂3 are excluded from the second part of the equation because for the
control group, Neighbors equals 0. In contrast, the estimated average treatment
effect among those who did not vote is given by (α̂+ β̂2)− α̂ = β̂2. Thus, the difference
in the estimated average treatment effect between those who voted in the 2004 primary
election and those who did not equals the estimated coefficient for the interaction effect
term, i.e., (β̂2 + β̂3) − β̂2 = β̂3. This implies that the coefficient for the interaction
effect term β3 characterizes how the average treatment effect varies as a function of the
covariate.

While we have so far focused on a factor or categorical variable, it is also possible
to use a continuous variable as a predictor. The use of continuous variables requires
a stronger linearity assumption that a one-unit increase in the predictor leads to an
increase of the same size in the outcome, regardless of the baseline value. In the current
application, we consider the age of the voter in 2008 as a predictor. We first compute
this variable by subtracting the year of birth variable from the year of election.

social.neighbor$age <- 2008 - social.neighbor$yearofbirth

summary(social.neighbor$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 22.00 43.00 52.00 51.82 61.00 108.00

Thus, in this subset of the data, the ages of voters vary from 22 to 108. We now
explore how the average causal effect of the Neighbors treatment changes as a
function of age. To do this, we use the age variable instead of the primary2004
variable in the linear regression model given in equation (4.9):

Y = α + β1 age + β2 Neighbors + β3 (age × Neighbors) + ε.

We can use the same computation strategy as above to understand how the average
treatment effect changes as a function of age. Consider a group of voters who are
x years old. The estimated average treatment effect of the Neighbors message for
these voters is given by (α̂ + β̂1x + β̂2 + β̂3x) − (α̂ + β̂1x) = β̂2 + β̂3x. In
contrast, among the voters who are (x + 1) years old, the estimated average effect is
{α̂ + β̂1(x + 1) + β̂2 + β̂3(x + 1)} − {α̂ + β̂1(x + 1)} = β̂2 + β̂3(x + 1). Thus, the
estimated coefficient for the interaction effect term β̂3 = {β̂2 + β̂3(x+1)}− (β̂2 + β̂3x)
represents the estimated difference in the average treatment effect between two groups
of voters whose ages differ by one year.
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To compute this estimated difference in R, we first fit the linear regression model
with the interaction term between the age and Neighbors variables. We use
the syntax age * messages, which produces the main terms and the interaction
term.

fit.age <- lm(primary2008 ~ age * messages, data = social.neighbor)

fit.age

##

## Call:

## lm(formula = primary2008 ~ age * messages, data = social.neighbor)

##

## Coefficients:

## (Intercept) age

## 0.0894768 0.0039982

## messagesNeighbors age:messagesNeighbors

## 0.0485728 0.0006283

The result suggests that the estimated difference in the average treatment effect
between two groups of voters whose ages differ by one year is equal to 0.06 percentage
points. Based on this regression model, we can also compute the estimated average
treatment effect for different ages. We choose 25, 45, 65, and 85 years old for
illustration. We use the predict() function by providing the newdata argument
with a data frame that contains these ages as separate observations.

## age = 25, 45, 65, 85 in Neighbors group

age.neighbor <- data.frame(age = seq(from = 25, to = 85, by = 20),

messages = "Neighbors")

## age = 25, 45, 65, 85 in Control group

age.control <- data.frame(age = seq(from = 25, to = 85, by = 20),

messages = "Control")

## average treatment effect for age = 25, 45, 65, 85

ate.age <- predict(fit.age, newdata = age.neighbor) -

predict(fit.age, newdata = age.control)

ate.age

## 1 2 3 4

## 0.06428051 0.07684667 0.08941283 0.10197899

Researchers have found that the linearity assumption is inappropriate when model-
ing turnout. While people become more likely to vote as they get older, their likelihood
of voting starts decreasing in their 60s or 70s. One common strategy to address this
phenomenon is to model turnout as a quadratic function of age by including the square
of age as an additional predictor. Consider the following model, which also includes
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interaction terms:

Y = α + β1 age + β2 age2 + β3 Neighbors + β4 (age × Neighbors)
+ β5 (age2 × Neighbors) + ε. (4.10)

In R, a formula can contain mathematical functions such as a square or natural
logarithm using the I() function. For example, to include a square of the x variable in
a formula, we can use the syntax I(xˆ2). The I() function enables other arithmetic
operations such as I(sqrt(x)) and I(log(x)). We now fit the model specified in
equation (4.10).

fit.age2 <- lm(primary2008 ~ age + I(age^2) + messages + age:messages +

I(age^2):messages, data = social.neighbor)

fit.age2

##

## Call:

## lm(formula = primary2008 ~ age + I(age^2) + messages + age:messages +

## I(age^2):messages, data = social.neighbor)

##

## Coefficients:

## (Intercept) age

## -9.700e-02 1.172e-02

## I(age^2) messagesNeighbors

## -7.389e-05 -5.275e-02

## age:messagesNeighbors I(age^2):messagesNeighbors

## 4.804e-03 -3.961e-05

In a complicated model like this one, the coefficients no longer have an easy
interpretation. In such situations, it is best to predict the average outcome under
various scenarios using the predict() function and then compute quantities of
interest. Here, we predict the average turnout rate for voters of different ages,
ranging from 25 to 85, under the Neighbors and Control conditions. We then
compute the average treatment effect as the difference between the two conditions
and characterize it as a function of age. The following syntax accomplishes this
task.

## predicted turnout rate under the Neighbors treatment condition

yT.hat <- predict(fit.age2,

newdata = data.frame(age = 25:85, messages = "Neighbors"))

## predicted turnout rate under the Control condition

yC.hat <- predict(fit.age2,

newdata = data.frame(age = 25:85, messages = "Control"))
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For ease of interpretation, we plot the results. The first plot displays the pre-
dicted turnout as a function of age separately for the Neighbors and Control
groups. The second plot shows the estimated average treatment effect as a function
of age.

## plotting the predicted turnout rate under each condition

plot(x = 25:85, y = yT.hat, type = "l", xlim = c(20, 90), ylim = c(0, 0.5),

xlab = "Age", ylab = "Predicted turnout rate")

lines(x = 25:85, y = yC.hat, lty = "dashed")

text(40, 0.45, "Neighbors condition")

text(45, 0.15, "Control condition")

## plotting the average treatment effect as a function of age

plot(x = 25:85, y = yT.hat - yC.hat, type = "l", xlim = c(20, 90),

ylim = c(0, 0.1), xlab = "Age",

ylab = "Estimated average\n treatment effect")
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We find that according to this model, the estimated average treatment effect peaks
around 60 years old, and the effect size is much smaller among young and old
voters.

4.3.4 REGRESSION DISCONTINUITY DESIGN
The discussion in chapter 2 implies that we can interpret the association between

treatment and outcome variables as causal if there is no confounding variable. This
was the case in the experimental studies we analyzed in sections 4.3.1–4.3.3. In
observational studies, however, the treatment assignment is not randomized. As
a result, confounding factors, rather than the treatment variable, may explain the
outcome difference between the treatment and control groups. In section 2.5, we
discussed several research design strategies to address this potential selection bias
problem. Here, we introduce another research design for observational studies called
regression discontinuity design (RD design).
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Table 4.8. Members of the British Parliament Personal Wealth Data

Variable Description

surname surname of the candidate
firstname first name of the candidate
party party of the candidate (labour or tory)
ln.gross log gross wealth at the time of death
ln.net log net wealth at the time of death
yob year of birth of the candidate
yod year of death of the candidate
margin.pre margin of the candidate’s party in the previous election
region electoral region
margin margin of victory (vote share)

As an application of RD design, we consider how much politicians can increase
their personal wealth due to holding office. Scholars investigated this question by
analyzing members of Parliament (MPs) in the United Kingdom.6 The authors of the
original study collected information about personal wealth at the time of death for
several hundred competitive candidates who ran for office in general elections between
1950 and 1970. The data are contained in the CSV file MPs.csv. The names and
descriptions of the variables in this data set appear in table 4.8.

A naive comparison of MPs and non-MPs in terms of their wealth is unlikely to
yield valid causal inference because those who became MPs differ from those who
did not in terms of many observable and unobservable characteristics. Instead, the key
intuition behind RD design is to compare those candidates who narrowly won office
with those who barely lost it. The idea is that when one’s margin of victory switches
from a negative number to a positive number, we would expect a large, discontinuous,
positive jump in the personal wealth of electoral candidates if serving in office actually
financially benefits them. Assuming that nothing else is going on at this point of
discontinuity, we can identify the average causal effect of being anMP at this threshold
by comparing the candidates who barely won the election with those who barely lost it.
Regression is used to predict the average personal wealth at the point of discontinuity.

A simple scatter plot with regression lines is the best way to understand RD design.
To do this, we plot the outcome variable, log net wealth at the time of death, against the
margin of victory. We take the natural logarithmic transformation of wealth because
this variable is quite skewed by a small number of politicians accumulating a large
amount of wealth (see the discussion in section 3.4.1). We then separately fit a linear
regression model to the observations with a positive margin (i.e., the candidates who
won elections and becameMPs) and another regression model to those with a negative
margin (the candidates who lost). The difference in predicted values at the point of

6 This application is based on Andrew C. Eggers and Jens Hainmueller (2009) “MPs for sale? Returns to office
in postwar British politics.” American Political Science Review, vol. 103, no. 4, pp. 513–533.

http://www.ln.net
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discontinuity, i.e., a zero margin of victory, between the two regressions represents the
average causal effect on personal wealth of serving as an MP.

We begin by subsetting the data based on party (Labour and Tory) and then fit two
regressions for each data set.

## load the data and subset them into two parties

MPs <- read.csv("MPs.csv")

MPs.labour <- subset(MPs, subset = (party == "labour"))

MPs.tory <- subset(MPs, subset = (party == "tory"))

## two regressions for Labour: negative and positive margin

labour.fit1 <- lm(ln.net ~ margin,

data = MPs.labour[MPs.labour$margin < 0, ])

labour.fit2 <- lm(ln.net ~ margin,

data = MPs.labour[MPs.labour$margin > 0, ])

## two regressions for Tory: negative and positive margin

tory.fit1 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])

tory.fit2 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin > 0, ])

To predict the outcome using a specific value of predictor, we can use the
predict() function by specifying a new data frame, newdata, as the argument. We
conduct a separate analysis for Labour and Tory candidates to estimate each party’s
causal effect of interest.

## Labour: range of predictions

y1l.range <- c(min(MPs.labour$margin), 0) # min to 0

y2l.range <- c(0, max(MPs.labour$margin)) # 0 to max

## prediction

y1.labour <- predict(labour.fit1, newdata = data.frame(margin = y1l.range))

y2.labour <- predict(labour.fit2, newdata = data.frame(margin = y2l.range))

## Tory: range of predictions

y1t.range <- c(min(MPs.tory$margin), 0) # min to 0

y2t.range <- c(0, max(MPs.tory$margin)) # 0 to max

## predict outcome

y1.tory <- predict(tory.fit1, newdata = data.frame(margin = y1t.range))

y2.tory <- predict(tory.fit2, newdata = data.frame(margin = y2t.range))

We can now plot the predicted values for each party in the scatter plot of log net
wealth and electoral margin.

## scatter plot with regression lines for Labour

plot(MPs.labour$margin, MPs.labour$ln.net, main = "Labour",

xlim = c(-0.5, 0.5), ylim = c(6, 18), xlab = "Margin of victory",

ylab = "log net wealth at death")
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abline(v = 0, lty = "dashed")

## add regression lines

lines(y1l.range, y1.labour, col = "blue")

lines(y2l.range, y2.labour, col = "blue")

## scatter plot with regression lines for Tory

plot(MPs.tory$margin, MPs.tory$ln.net, main = "Tory", xlim = c(-0.5, 0.5),

ylim = c(6, 18), xlab = "Margin of victory",

ylab = "log net wealth at death")

abline(v = 0, lty = "dashed")

## add regression lines

lines(y1t.range, y1.tory, col = "blue")

lines(y2t.range, y2.tory, col = "blue")
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The result suggests that Tory MPs financially benefit from serving in office whereas
Labour MPs do not. How large is the effect for Tory candidates? We can numerically
compute the differences in prediction at the zero margin and put them back on
the original scale (pounds) since net wealth is measured on a log scale. Recall from
section 3.4.1 that the inverse function of the natural logarithm is the exponential
function, given by exp() in R.

## average net wealth for Tory MP

tory.MP <- exp(y2.tory[1])

tory.MP

## 1

## 533813.5

## average net wealth for Tory non-MP

tory.nonMP <- exp(y1.tory[2])
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tory.nonMP

## 2

## 278762.5

## causal effect in pounds

tory.MP - tory.nonMP

## 1

## 255050.9

The estimated effect of being an MP on the personal wealth of Tory candidates is a
little above 250,000 pounds. Since the average net wealth for Tory non-MPs is predicted
to be a little above 270,000 pounds, the estimated effect is quite substantial. Being an
MP almost doubles one’s net wealth at death.

How should one examine the internal validity of regression discontinuity design?
One way is a placebo test. A placebo test finds a case where the effect is theoretically
known to be zero and then shows that the estimated effect is indeed close to zero. The
name comes from the fact that in a medical study a placebo is supposed to have zero
effect on health outcomes (though much evidence suggests that a placebo often has
effects, perhaps via psychological mechanisms). In the current application, we estimate
the average treatment effect on the margin of victory for the same party in the previous
election. Since being an MP in the future should not affect the past election result, this
effect should be zero if the RD design is valid. If the estimated effect is far from zero,
on the other hand, it would suggest a possible violation of the assumption of regression
discontinuity. For example, the incumbent party may be engaged in election fraud in
order to win close elections.

## two regressions for Tory: negative and positive margin

tory.fit3 <- lm(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])

tory.fit4 <- lm(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin > 0, ])

## the difference between two intercepts is the estimated effect

coef(tory.fit4)[1] - coef(tory.fit3)[1]

## (Intercept)

## -0.01725578

The estimated effect on the previous margin of victory is less than 2 percentage
points. This small effect size gives empirical support for the claim that RD design is
applicable to this study. In chapter 7, we will more formally answer the question of
how small is small enough to reach this conclusion.

While RD design can overcome the main difficulty of observational studies, i.e.,
potential confounding bias, this strength of internal validity comes at the cost of
external validity. Specifically, the estimated causal effects obtained under this design
apply only to the observations near the point of discontinuity. In our application, these
observations represent candidates who narrowly won or lost elections. The degree to
which MPs benefit financially from serving in office may be quite different for those
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who won elections by a larger margin. Thus, although RD requires weaker assumptions
than other approaches, the resulting estimates may not be generalizable to a larger
population of interest.

Regression discontinuity design (RD design) is a research design strategy for
causal inference in observational studies with possible confounding factors. RD
design assumes that the change in outcome at the point of discontinuity can be
attributed to the change in the treatment variable alone. While RD design often
has strong internal validity, it may lack external validity because the result may
not be generalizable to observations away from the point of discontinuity.

4.4 Summary

We began this chapter with a discussion of election forecasting. We showed that
preelection polls can be used to obtain relatively accurate, though not perfect, predic-
tions of election outcomes in the context of US presidential elections. We introduced
prediction error and explained how the accuracy of prediction can be measured
using statistics such as bias and the root-mean-squared error. We also discussed the
problem of classification, which is the prediction of categorical outcomes. Two types
of misclassification are possible—false positives and false negatives. For example, a
voter who did turn out being classified as a nonvoter would be a false negative, whereas
a voter who did not turn out being classified as a voter would be a false positive. There
is a clear trade-off between the two: minimizing false positives tends to increase false
negatives and vice versa.

We then introduced a linear regression model as a commonly used method to
predict an outcome variable of interest using another variable. The model enables
researchers to predict an outcome variable based on the values of explanatory vari-
ables or predictors. Predictions based on the linear regression model are typically
obtained through the method of least squares by minimizing the sum of squared
prediction errors. We discussed the exact relationship between linear regression and
correlation, and the phenomenon called regression towards the mean. Finally, we
presented several ways to assess model fit through the examination of the coefficient
of determination and residuals. It is important to avoid overfitting one’s model to
the data at hand so that the model does not capture any idiosyncratic characteristics
of the sample and instead identifies the systematic features of the data-generating
process.

Despite our intuition, association discovered through regression does not neces-
sarily imply causation. A regression’s ability to predict observable outcomes does not
necessarily entail ability to predict counterfactual outcomes. Yet, valid causal inference
requires the latter. At the end of the chapter, we discussed the use of regression in
the analysis of experimental and observational data. We discussed how to estimate
heterogenous treatment effects using the linear regression model with interaction
terms. We also discussed the regression discontinuity design. By exploiting the
discontinuity in the treatment assignment mechanism, this design enables researchers
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Table 4.9. Intrade Prediction Market Data from 2008 and 2012.

Variable Description

day date of the session
statename full name of each state (including District of Columbia in 2008)
state abbreviation of each state (including District of Columbia in 2008)
PriceD closing price (predicted vote share) of the Democratic nominee’s

market
PriceR closing price (predicted vote share) of the Republican nominee’s

market
VolumeD total session trades of the Democratic Party nominee’s market
VolumeR total session trades of the Republican Party nominee’s market

to credibly identify causal effects in observational studies. The main disadvantage of
the regression discontinuity design, however, is the potential lack of external validity.
Specifically, the empirical conclusions based on this design may not be applicable
beyond the observations close to the discontinuity threshold.

4.5 Exercises

4.5.1 PREDICTION BASED ON BETTING MARKETS
Earlier in the chapter, we studied the prediction of election outcomes using polls.

Here, we study the prediction of election outcomes based on betting markets. In
particular, we analyze data for the 2008 and 2012 US presidential elections from the
online betting company called Intrade. At Intrade, people trade contracts such as
“Obama to win the electoral votes of Florida.” Each contract’s market price fluctuates
based on its sales. Why might we expect betting markets like Intrade to accurately
predict the outcomes of elections or of other events? Some argue that the market can
aggregate available information efficiently. In this exercise, we will test this efficient
market hypothesis by analyzing the market prices of contracts for Democratic and
Republican nominees’ victories in each state.

The data files for 2008 and 2012 are available in CSV format as intrade08.csv
and intrade12.csv, respectively. Table 4.9 presents the names and descriptions
of these data sets. Each row of the data sets represents daily trading information
about the contracts for either the Democratic or Republican Party nominee’s victory
in a particular state. We will also use the election outcome data. These data files are
pres08.csv (table 4.1) and pres12.csv (table 4.5).

1. We will begin by using the market prices on the day before the election to predict
the 2008 election outcome. To do this, subset the data such that it contains the
market information for each state and candidate on the day before the election
only. Note that in 2008, Election Day was November 4. We compare the closing
prices for the two candidates in a given state and classify a candidate whose
contract has a higher price as the predicted winner of that state. Which states
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were misclassified? How does this compare to the classification by polls presented
earlier in this chapter? Repeat the same analysis for the 2012 election, which was
held on November 6. How well did the prediction market do in 2012 compared
to 2008? Note that in 2012 some less competitive states have missing data on
the day before the election because there were no trades on the Republican
and Democratic betting markets. Assume Intrade predictions would have been
accurate for these states.

2. How do the predictions based on the betting markets change over time? Imple-
ment the same classification procedure as above on each of the last 90 days of
the 2008 campaign rather than just the day before the election. Plot the predicted
number of electoral votes for the Democratic Party nominee over this 90-day
period. The resulting plot should also indicate the actual election result. Note
that in 2008, Obama won 365 electoral votes. Briefly comment on the plot.

3. Repeat the previous exercise but this time use the seven-day moving-average
price, instead of the daily price, for each candidate within a state. Just as in
section 4.1.3, this can be done with a loop. For a given day, we take the average
of the Session Close prices within the past seven days (including that day). To
answer this question, we must first compute the seven-day average within each
state. Next, we sum the electoral votes for the states Obama is predicted to win.
Using the tapply() function will allow us to efficiently compute the predicted
winner for each state on a given day.

4. Create a similar plot for 2008 statewide poll predictions using the data file
polls08.csv (see table 4.2). Notice that polls are not conducted daily within
each state. Therefore, within a given state, for each of the last 90 days of the
campaign, we compute the average margin of victory from themost recent poll(s)
conducted. If multiple polls occurred on the same day, average these polls. Based
on the most recent predictions in each state, sum Obama’s total number of
predicted electoral votes. One strategy to answer this question is to program two
loops—an inner loop with 51 iterations (for each state) and an outer loop with 90
iterations (for each day).

5. What is the relationship between the price margins of the Intrade market and the
actual margin of victory? Using the market data from the day before the election
in 2008 only, regress Obama’s actual margin of victory in each state on Obama’s
price margin from the Intrade markets. Similarly, in a separate analysis, regress
Obama’s actual margin of victory on Obama’s predicted margin from the latest
polls within each state. Interpret the results of these regressions.

6. Do the 2008 predictions of polls and Intrade accurately predict each state’s 2012
elections results? Using the fitted regressions from the previous question, forecast
Obama’s actual margin of victory for the 2012 election in two ways. First, use the
2012 Intrade price margins from the day before the election as the predictor in
each state. Recall that the 2012 Intrade data do not contain market prices for all
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Table 4.10. 2012 US Presidential Election Polling Data.

Variable Description

state abbreviated name of the state in which the poll was conducted
Obama predicted support for Obama (percentage)
Romney predicted support for Romney (percentage)
Pollster name of the organization conducting the poll
middate middate of the period when the poll was conducted

states. Ignore states without data. Second, use the 2012 poll-predicted margins
from the latest polls in each state as the predictor, found in polls12.csv.
Table 4.10 presents the names and descriptions of the 2012 US presidential
election polling data.

4.5.2 ELECTION AND CONDITIONAL CASH TRANSFER PROGRAM IN MEXICO
In this exercise, we analyze the data from a study that seeks to estimate the electoral

impact of Progresa, Mexico’s conditional cash transfer program (CCT program).7 The
original study relied on a randomized evaluation of the CCT program in which
eligible villages were randomly assigned to receive the program either 21 months (early
Progresa) or 6 months (late Progresa) before the 2000 Mexican presidential election.
The author of the original study hypothesized that the CCT program would mobilize
voters, leading to an increase in turnout and support for the incumbent party (PRI, or
Partido Revolucionario Institucional, in this case). The analysis was based on a sample
of precincts that contain at most one participating village in the evaluation.

The data we analyze are available as the CSV file progresa.csv. Table 4.11
presents the names and descriptions of variables in the data set. Each observation in
the data represents a precinct, and for each precinct the file contains information about
its treatment status, the outcomes of interest, socioeconomic indicators, and other
precinct characteristics.

1. Estimate the impact of the CCT program on turnout and support for the
incumbent party (PRI) by comparing the average electoral outcomes in the
“treated” (early Progresa) precincts versus the ones observed in the “control”
(late Progresa) precincts. Next, estimate these effects by regressing the out-
come variable on the treatment variable. Interpret and compare the estimates
under these approaches. Here, following the original analysis, use the turnout
and support rates as shares of the eligible voting population (t2000 and
pri2000s, respectively). Do the results support the hypothesis? Provide a brief
interpretation.

7 This exercise is based on the following articles: Ana de la O (2013) “Do conditional cash transfers affect voting
behavior? Evidence from a randomized experiment inMexico.”American Journal of Political Science, vol. 57, no. 1,
pp. 1–14 and Kosuke Imai, Gary King, and Carlos Velasco (2015) “Do nonpartisan programmatic policies have
partisan electoral effects? Evidence from two large scale randomized experiments.” Working paper.
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Table 4.11. Conditional Cash Transfer Program (Progresa) Data.

Variable Description

treatment whether an electoral precinct contains a village where
households received early Progresa

pri2000s PRI votes in the 2000 election as a share of precinct
population above 18

pri2000v official PRI vote share in the 2000 election
t2000 turnout in the 2000 election as a share of precinct

population above 18
t2000r official turnout in the 2000 election
pri1994 total PRI votes in the 1994 presidential election
pan1994 total PAN votes in the 1994 presidential election
prd1994 total PRD votes in the 1994 presidential election
pri1994s total PRI votes in the 1994 election as a share of precinct

population above 18
pan1994s total PAN votes in the 1994 election as a share of precinct

population above 18
prd1994s total PRD votes in the 1994 election as a share of precinct

population above 18
pri1994v official PRI vote share in the 1994 election
pan1994v official PAN vote share in the 1994 election
prd1994v official PRD vote share in the 1994 election
t1994 turnout in the 1994 election as a share of precinct

population above 18
t1994r official turnout in the 1994 election
votos1994 total votes cast in the 1994 presidential election
avgpoverty precinct average of village poverty index
pobtot1994 total population in the precinct
villages number of villages in the precinct

2. In the original analysis, the author fits a linear regression model that includes, as
predictors, a set of pretreatment covariates as well as the treatment variable. Here,
we fit a similar model for each outcome that includes the average poverty level in
a precinct (avgpoverty), the total precinct population in 1994 (pobtot1994),
the total number of voters who turned out in the previous election (votos1994),
and the total number of votes cast for each of the three main competing parties in
the previous election (pri1994 for PRI, pan1994 for Partido Acción Nacional
or PAN, and prd1994 for Partido de la Revolución Democrática or PRD).
Use the same outcome variables as in the original analysis, which are based on
the shares of the voting age population. According to this model, what are the
estimated average effects of the program’s availability on turnout and support for
the incumbent party? Are these results different from those you obtained in the
previous question?
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3. Next, we consider an alternative, and more natural, model specification. We
will use the original outcome variables as in the previous question. However,
our model should include the previous election outcome variables measured as
shares of the voting age population (as done for the outcome variables t1994,
pri1994s, pan1994s, and prd1994s) instead of those measured in counts.
In addition, we apply the natural logarithmic transformation to the precinct
population variable when including it as a predictor. As in the original model,
our model includes the average poverty index as an additional predictor. Are the
results based on these new model specifications different from those we obtained
in the previous question? If the results are different, which model fits the data
better?

4. We examine the balance of some pretreatment variables used in the previous
analyses. Using box plots, compare the distributions of the precinct population
(on the original scale), average poverty index, previous turnout rate (as a share
of the voting age population), and previous PRI support rate (as a share of the
voting age population) between the treatment and control groups. Comment on
the patterns you observe.

5. We next use the official turnout rate t2000r (as a share of the registered voters)
as the outcome variable rather than the turnout rate used in the original analysis
(as a share of the voting age population). Similarly, we use the official PRI’s
vote share pri2000v (as a share of all votes cast) rather than the PRI’s support
rate (as a share of the voting age population). Compute the average treatment
effect of the CCT program using a linear regression with the average poverty
index, the log-transformed precinct population, and the previous official election
outcome variables (t1994r for the previous turnout; pri1994v, pan1994v,
and prd1994v for the previous PRI, PAN, and PRD vote shares). Briefly
interpret the results.

6. So far we have focused on estimating the average treatment effects of the CCT
program. However, these effects may vary from one precinct to another. One
important dimension to consider is poverty. We may hypothesize that since
individuals in precincts with higher levels of poverty are more receptive to
cash transfers, they are more likely to turn out in the election and support the
incumbent party when receiving the CCT program. Assess this possibility by
examining how the average treatment effect of the policy varies by different
levels of poverty for precincts. To do so, fit a linear regression with the following
predictors: the treatment variable, the log-transformed precinct population, the
average poverty index and its square, the interaction between the treatment and
the poverty index, and the interaction between the treatment and the squared
poverty index. Estimate the average effects for unique observed values and plot
them as a function of the average poverty level. Comment on the resulting
plot.
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Table 4.12. Brazilian Government Transfer Data.

Variable Description

pop82 population in 1982
poverty80 poverty rate of the state in 1980
poverty91 poverty rate of the state in 1991
educ80 average years in education of the state in 1980
educ91 average years in education of the state in 1991
literate91 literacy rate of the state in 1991
state state
region region
id municipal ID
year year of measurement

4.5.3 GOVERNMENT TRANSFER AND POVERTY REDUCTION IN BRAZIL
In this exercise, we estimate the effects of increased government spending on edu-

cational attainment, literacy, and poverty rates.8 Some scholars argue that government
spending accomplishes very little in environments of high corruption and inequality.
Others suggest that in such environments, accountability pressures and the large
demand for public goods will drive elites to respond. To address this debate, we exploit
the fact that until 1991, the formula for government transfers to individual Brazilian
municipalities was determined in part by the municipality’s population. This meant
that municipalities with populations below the official cutoff did not receive additional
revenue, while states above the cutoff did. The data set transfer.csv contains the
variables shown in table 4.12.

1. We will apply the regression discontinuity design to this application. State the
required assumption for this design and interpret it in the context of this specific
application.What would be a scenario in which this assumption is violated?What
are the advantages and disadvantages of this design for this specific application?

2. Begin by creating a variable that determines how close each municipality was to
the cutoff that determined whether states received a transfer or not. Transfers
occurred at three separate population cutoffs: 10,188, 13,584, and 16,980. Using
these cutoffs, create a single variable that characterizes the difference from
the closest population cutoff. Following the original analysis, standardize this
measure by dividing the difference by the corresponding cutoff, and multiplying
it by 100. This will yield a normalized percentage score for the difference between
the population of each state and the cutoff, relative to the cutoff value.

8 This exercise is based on Stephan Litschig and Kevin M. Morrison (2013) “The impact of intergovernmental
transfers on education outcomes and poverty reduction.” American Economic Journal: Applied Economics, vol. 5,
no. 4, pp. 206–240.
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3. Begin by subsetting the data to include only those municipalities within 3 points
of the funding cutoff on either side. Using regressions, estimate the average
causal effect of government transfer on each of the three outcome variables of
interest: educational attainment, literacy, and poverty. Give a brief substantive
interpretation of the results.

4. Visualize the analysis performed in the previous question by plotting data points,
fitted regression lines, and the population threshold. Briefly comment on the plot.

5. Instead of fitting linear regression models, we compute the difference-in-means
of the outcome variables between the groups of observations above the threshold
and below it. How do the estimates differ from what you obtained in question 3?
Is the assumption invoked here identical to the one required for the analysis
conducted in question 3? Which estimates are more appropriate? Discuss.

6. Repeat the analysis conducted in question 3 but vary the width of the analysis
window from 1 to 5 percentage points below and above the threshold. Obtain the
estimate for every percentage point. Briefly comment on the results.

7. Conduct the same analysis as in question 3 but this time using the measures of
poverty rate and educational attainment taken in 1980, before the population-
based government transfers began. What do the results suggest about the validity
of the analysis presented in question 3?



Chapter 5

Discovery

The greatest value of a picture is when it forces us to notice
what we never expected to see.
— John W. Tukey, Exploratory Data Analysis

Over the last couple of decades, the variety as well as volume of data analyzed in
quantitative social science research has dramatically increased. In this chapter, we
introduce three types of data that were not analyzed in previous chapters: textual,
network, and spatial data. We conduct exploratory data analysis to inductively learn
about the underlying patterns and structure of these data. We saw an example of such
analysis applied to the degree of political polarization in chapter 3. In this chapter,
we first analyze textual data to discover topics and predict authorship of documents
based on the frequency of word usage. Our application is the disputed authorship of
The Federalist Papers. Second, we analyze network data, which record the relationships
among units. As examples, we will explore the marriage network in Renaissance
Florence and social media data from Twitter. Finally, we visualize spatial data and
examine changes in patterns across time and space. Our examples are the cholera
outbreak in the 19th century and the expansion of Walmart retail stores in the 21st
century.

5.1 Textual Data

The widespread use of the Internet has led to an astronomical amount of digitized
textual data accumulating every second through email, websites, and social media
outlets. The analysis of blog sites and social media posts can give new insights
into human behavior and opinions. At the same time, large-scale efforts to digitize
published articles, books, and government documents have been underway, provid-
ing exciting opportunities to revisit previously studied questions, by analyzing new
data.

5.1.1 THE DISPUTED AUTHORSHIP OF THE FEDERALIST PAPERS
While new opportunities for text analysis have grown in recent years, we begin

by revisiting one of the earliest examples of text analysis in the statistics literature.
We analyze the text of The Federalist, more commonly known as The Federalist
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Figure 5.1. The Title Page of The Federalist, Vol. 1. Source: Library of Congress.

Papers.1 The Federalist, whose title page is displayed in figure 5.1, consists of 85 essays
attributed to Alexander Hamilton, John Jay, and James Madison from 1787 to 1788 in
order to encourage people in New York to ratify the newly drafted US Constitution.
Because both Hamilton and Madison helped draft the Constitution, scholars regard
The Federalist Papers as a primary document reflecting the intentions of the authors of
the Constitution.

The Federalist Papers were originally published in various New York state news-
papers under the pseudonym of “Publius.” For this reason, the authorship of each
paper has been the subject of scholarly research. According to the Library of
Congress,2 experts believe that Hamilton wrote 51 essays while Madison authored
15.3 In addition, Hamilton and Madison jointly authored 3 papers whereas John Jay
wrote 5.4 The remaining 11 essays were written by either Hamilton orMadison, though

1 This section is in part based on F. Mosteller and D.L. Wallace (1963) “Inference in an authorship problem.”
Journal of the American Statistical Association, vol. 58, no. 302, pp. 275–309.

2 See the website https://www.congress.gov/resources/display/content/The+Federalist
+Papers#TheFederalistPapers-1.

3 The Federalist Papers known to be written by Hamilton: nos. 1, 6–9, 11–13, 15–17, 21–36, 59–61, and 65–85.
Papers known to be written by Madison: nos. 10, 14, 37–48, and 58.

4 The Federalist Papers known to be jointly written by Hamilton and Madison: nos. 18–20. The Federalist
Papers known to be written by John Jay: nos. 2–5 and 64.

https://www.congress.gov/resources/display/content/The+Federalist+Papers#TheFederalistPapers-1
https://www.congress.gov/resources/display/content/The+Federalist+Papers#TheFederalistPapers-1
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Table 5.1. The Federalist Papers Data.

AFTER an unequivocal experience of the inefficiency

of the subsisting federal government, you are called

upon to deliberate on a new Constitution for the

United States of America.
...

This shall accordingly constitute the subject of my next

address.

Note: The data consists of the raw text of each of 85 essays in The Federalist Papers. The first and
last sentences of The Federalist Paper no. 1 appear here as an example.

scholars dispute which one.5 Below, we analyze the text of The Federalist Papers to
predict their authorship.

The text of the 85 essays is scraped from the Library of Congress website and
stored as fpXX.txt, where XX represents the essay number ranging from 01 to
85. Scraping refers to an automated method of data collection from websites using a
computer program. Each data file contains the textual data of its corresponding essay.
See table 5.1, which displays the first and last sentences of The Federalist Paper no. 1 as
an example.

Before analyzing the data, we need to preprocess it. The tm package provides a
number of useful natural language processing functionalities in R. One functionality
eliminates unnecessary white space between words. Another, called stemming, strips
away prefixes and suffixes to produce stem words so that different forms of the same
word can be recognized. For example, the stem form of “government” is “govern.” Note
that the stemming functionality in the tm package requires another package called
SnowballC. Be sure to install these packages by utilizing the install.packages()
function or clicking the Install icon under the Packages tab in the bottom-right
window of RStudio (see section 1.3.7 for more detailed instructions). The installation
of a package needs only to occur once. However, in order to use a package, you must
load it once in each new R session using the library() function. Load multiple
packages simultaneously by separating them with commas.

## load two required libraries

library(tm, SnowballC)

We begin by loading the text corpus, or collection of texts, into R using the
Corpus() function. The DirSource() function specifies the directory and pattern
of corpus file names. The directory argument indicates the files’ location, in this
case the working directory’s subdirectory called federalist, a folder youmust create

5 The Federalist Papers with disputed authorship are nos. 49, 50–57, 62, and 63.
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Table 5.2. Commonly Used Functions to Preprocess Raw Texts.

Function Description

tolower() transform to lower case
stripWhitespace() remove white space
removePunctuation() remove punctuation
removeNumbers() remove numbers
removeWords() remove specified words
stemDocument() stem the words in a document for specified language

before running the code. The pattern argument identifies a pattern contained in the
names of all data files, in this case fp (fp01.txt, fp10.txt, etc.).

## load the raw corpus

corpus.raw <- Corpus(DirSource(directory = "federalist", pattern = "fp"))

corpus.raw

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 85

We now preprocess our corpus. We use the tm_map() function, which enables
various natural language processing operations on corpora. The first argument of
this function is the name of a corpus, while the second argument is a function
that transforms text. Table 5.2 summarizes these functions. We first turn all letters
to lower case by using the tolower() function. Since tolower() is a function
in the R base package rather than in the tm package, it must pass through the
wrapper function called content_transformer() (as of version 0.6–1).6 Next, we
eliminate unnecessary white space with the stripWhitespace() function, remove
punctuation with the removePunctuation() function, and remove numbers with
the removeNumbers() function.

## make lower case

corpus.prep <- tm_map(corpus.raw, content_transformer(tolower))

## remove white space

corpus.prep <- tm_map(corpus.prep, stripWhitespace)

## remove punctuation

corpus.prep <- tm_map(corpus.prep, removePunctuation)

## remove numbers

corpus.prep <- tm_map(corpus.prep, removeNumbers)

6 Note that older versions of the tm package do not require the use of the content_transformer()
function.
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Next, to remove the most commonly used words such as a and the, we first use
the stopwords() function to obtain a list of stop words for the input language. The
beginning of the English list appears below.

head(stopwords("english"))

## [1] "i" "me" "my" "myself" "we" "our"

We will then pass this list through the removeWords() function. Finally, we stem
each word.

## remove stop words

corpus <- tm_map(corpus.prep, removeWords, stopwords("english"))

## finally stem remaining words

corpus <- tm_map(corpus, stemDocument)

We can extract a specific essay by using double square brackets [[ and ]] with an
integer indicating the element to be extracted (see section 3.7.2 for more details about
the use of double square brackets). In addition, the content() function prints out
the actual text of the selected document.

## the output is truncated here to save space

content(corpus[[10]]) # essay no. 10

## [1] "among numer advantag promis wellconstruct union none"

## [2] " deserv accur develop tendenc break "

## [3] " control violenc faction friend popular govern never"

...

Compare this preprocessed document with the corresponding section of the original
text, which is displayed here.

AMONG the numerous advantages promised by a well-constructed

Union, none

deserves to be more accurately developed than its tendency

to break and

control the violence of faction. The friend of popular

governments never

We observe from the above text that all preprocessing was done as specified in our
prior code. That is, all letters were transformed to lower case, punctuation marks such
as hyphens and commas were taken out, stop words and white space were removed,
and words were stemmed to be reduced to their stem word (e.g., transform numerous
to numer and promised to promis).
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5.1.2 DOCUMENT-TERM MATRIX
One quick way to explore textual data is to simply count occurrences of each word or

term. The number of times a particular word appears in a given document is called term
frequency (tf ). The tf statistic can be summarized in a document-term matrix, which
is a rectangular array with rows representing documents and columns representing
unique terms. The (i, j ) element of this matrix gives the counts of the j th term
(column) in the i th document (row). We can also flip rows and columns and convert a
document-term matrix to a term-document matrix where rows and columns represent
terms and documents, respectively. A document-term matrix can be created by the
DocumentTermMatrix() function in R (similarly, the TermDocumentMatrix()
function creates a term-document matrix).

dtm <- DocumentTermMatrix(corpus)

dtm

## <<DocumentTermMatrix (documents: 85, terms: 4849)>>

## Non-/sparse entries: 44917/367248

## Sparsity : 89%

## Maximal term length: 18

## Weighting : term frequency (tf)

Because the output of the DocumentTermMatrix() function is a special matrix,
R prints the document-term matrix’s summary rather than the document-term matrix
itself. The summary contains the number of documents as well as the number of terms.
In addition, the number of nonsparse or nonzero entries and the number of sparse en-
tries in the document-termmatrix are provided. Sparsity refers to the proportion of
zero entries in the document-term matrix. As is the case in this example, a document-
term matrix is typically sparse. That is, the vast majority of its entries are zero because
most terms appear in only a small number of documents. In the case of The Federalist
Papers, 89% of the elements of the document-term matrix are 0. Finally, the summary
output provides the maximal term length and quantity by which the entries of this
matrix are weighted. In the current example, each entry represents the tf statistic.

To take a closer look at the actual entries of this matrix, we use the inspect()
function, which displays detailed information on a corpus or term-document matrix.
We can subset these matrix objects just like we subset a data frame object using square
brackets [,]. As an example, the following syntax inspects the first 5 rows and first
8 columns of the document-term matrix.

inspect(dtm[1:5, 1:8])

## <<DocumentTermMatrix (documents: 5, terms: 8)>>

## Non-/sparse entries: 4/36

## Sparsity : 90%

## Maximal term length: 7

## Weighting : term frequency (tf)

##
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## Terms

## Docs abandon abat abb abet abhorr abil abject abl

## fp01.txt 0 0 0 0 0 0 0 1

## fp02.txt 0 0 0 0 0 1 0 0

## fp03.txt 0 0 0 0 0 0 0 2

## fp04.txt 0 0 0 0 0 0 0 1

## fp05.txt 0 0 0 0 0 0 0 0

Alternatively, we can coerce this object into a standard matrix object using the
as.matrix() function, and print it directly.

dtm.mat <- as.matrix(dtm)

5.1.3 TOPIC DISCOVERY
We begin by visualizing and analyzing the document-term matrix created above.

Our analysis of word frequency critically relies on the commonly used bag-of-words
assumption, which ignores the grammar and ordering of words. This means that our
analysis is unlikely to detect subtlemeanings of texts. The distribution of term frequency
(tf) should, however, allow us to infer topics discussed in the documents. A common
way to visualize this distribution is a word cloud where more frequently used words
appear in a larger font. The wordcloud() function in thewordcloud package creates
a word cloud, which may serve as a useful visualization tool because the document-
term matrix often contains too many columns to visually inspect.

Like clustering, covered in section 3.7, topic discovery is an example of unsupervised
learning because we lack access to true information about topic assignment. That is, we
do not know, a priori, what topics exist in the corpus and characterize each document.
We wish to discover topics by analyzing the distribution of term frequency within a
given document and across documents. In contrast, in supervised learning, researchers
use a sample with an observed outcome variable to learn about the relationship
between the outcome and predictors. For example, we may have human coders read
some documents and assign topics. We can then use this information to predict the
topics of other documents that have not been read. Clearly, the lack of information
about outcome variablesmakes unsupervised learning problemsmore challenging than
supervised problems.

We begin by visualizing The Federalist Papers nos. 12 and 24 with word clouds
in order to infer their topics. Both papers are known to be authored by Alexander
Hamilton. In the wordcloud package, which we must install, the wordcloud()
function takes two main arguments. The first argument takes a vector of words while
the second argument takes the frequencies of those words. To avoid clutter, we limit
the maximum number of words to be plotted by setting max.words to 20.

library(wordcloud)

wordcloud(colnames(dtm.mat), dtm.mat[12, ], max.words = 20) # essay no. 12

wordcloud(colnames(dtm.mat), dtm.mat[24, ], max.words = 20) # essay no. 24



196 Chapter 5: Discovery

excis
object

duti
far

great

part
will

tr
ad

e import

revenu tax

mustupon

state

nation
co

m
m

er
c

govern

co
un

tr
i

land
direct

peac
one

power

upon

garrison

object

without
state

appeartime

constitut

even

establish

two

armi

nation

necess

le
gi

sl
at

urmust
will

The comparison of the two word clouds shows that the left-hand plot for pa-
per no. 12 contains words related to economy such as revenu (the root form of
revenue), commerc (commerce), trade, tax, land, and so on. In contrast,
the right-hand plot for paper no. 24 contains more words about security includ-
ing power, peac (the root form of peace), garrison, and armi (army). Re-
call that the stemDocument() function stems documents. We now can use the
stemCompletion() function to recover the full version of a stemmed word. The
function’s first argument takes the stem word or words, while the second argument
takes candidate full words. Our candidate full words here come from the unstemmed
corpus, corpus.prep.

stemCompletion(c("revenu", "commerc", "peac", "army"), corpus.prep)

## revenu commerc peac army

## "revenue" "commerce" "peace" "army"

These discovered topics are indeed consistent with the actual content of the papers.
Paper no. 12 is entitled, “The utility of the Union in respect to revenue” and discusses
the economic benefits of the 13 colonies forming one nation. In contrast, the title of
no. 24 is “The powers necessary to the common defense further considered” and
discusses the creation of a national army as well as the relationship between legislative
power and federal forces.

In the above analysis, we visualized the distribution of term frequency within each
document. However, a certain term’s high frequency within a document means little
if that term often appears across the documents of the corpus. To address this issue,
we should downweight the terms that occur frequently across documents. This can be
done by computing the statistic called term frequency–inverse document frequency, or
tf–idf in short. The tf–idf statistic is another measure of the importance of each term in
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a given document. For a given document d and term w, we define tf–idf(w, d) as

tf–idf(w, d) = tf(w, d) × idf(w). (5.1)

In the above equation, tf(w, d) represents term frequency or the number of occurrences
of termw in document d. In some cases, we convert tf(w, d) to a log scale when it takes
a positive value. Note that tf(w, d) equals 0 when term w never occurs in document d.

The other factor in equation (5.1), idf(w), is the inverse document frequency, which
is typically defined as

idf(w) = log
(

N
df(w)

)
.

In this equation, N is the total number of documents and df(w) is the document
frequency or the number of documents that contain term w. Dividing by df(w)
implies that idf(w) takes a smaller value when term w is used more frequently across
documents. As a consequence, common terms across documents receive less weight in
tf–idf.

We can compute the tf–idf measure using the weightTfIdf() func-
tion, which takes as its input the document-term matrix output from the
DocumentTermMatrix() function. Note that the weightTfIdf() function has
an argument normalize, for which the default value is FALSE. If this argument is set
to TRUE, then term frequency tf(w, d) will be divided by the total number of terms in
document d.

dtm.tfidf <- weightTfIdf(dtm) # tf-idf calculation

Below, we list the 10 most important terms for The Federalist Papers nos. 12 and 24
using the tf–idf measure. The sort() function helpfully identifies the terms with the
largest tf–idf values. We sort a vector in decreasing (increasing) order by specifying
the decreasing argument as TRUE (FALSE). Since the class of dtm.tfidf is
still DocumentTermMatrix, we need to convert it to a matrix before applying the
sort() function.

dtm.tfidf.mat <- as.matrix(dtm.tfidf) # convert to matrix

## 10 most important words for paper no. 12

head(sort(dtm.tfidf.mat[12, ], decreasing = TRUE), n = 10)

## revenu contraband patrol excis coast

## 0.01905877 0.01886965 0.01886965 0.01876560 0.01592559

## trade per tax cent gallon

## 0.01473504 0.01420342 0.01295466 0.01257977 0.01257977
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## 10 most important words for paper no. 24

head(sort(dtm.tfidf.mat[24, ], decreasing = TRUE), n = 10)

## garrison dockyard settlement spain armi

## 0.02965511 0.01962294 0.01962294 0.01649040 0.01544256

## frontier arsenal western post nearer

## 0.01482756 0.01308196 0.01306664 0.01236780 0.01166730

The results clearly show that the most important terms for The Federalist Paper
no. 12 concern the economy whereas those for paper no. 24 relate to security policies,
though such word association is done by the researcher.

The analysis of documents based on term frequency relies on the bag-of-words
assumption that ignores the order of words. To measure the relative importance
of a term in a document, we can compute the term frequency–inverse document
frequency (tf–idf), which represents the relative frequency of the term inversely
weighted by the number of documents in which the term appears (document
frequency).

Finally, we consider an alternative approach to topic discovery, by identifying
clusters of similar essays, based on the tf–idf measure. We focus on the essays written
by Hamilton. Following section 3.7, we apply the k-means algorithm to this weighted
document-termmatrix. After some experimentation, we choose the number of clusters
to be 4. While arbitrary, this choice produces clusters that seem reasonable. We check
the number of iterations to convergence tomake sure that it does not exceed the default
maximum value 10.

k <- 4 # number of clusters

## subset the Federalist papers written by Hamilton

hamilton <- c(1, 6:9, 11:13, 15:17, 21:36, 59:61, 65:85)

dtm.tfidf.hamilton <- dtm.tfidf.mat[hamilton, ]

## run k-means

km.out <- kmeans(dtm.tfidf.hamilton, centers = k)

km.out$iter # check the convergence; number of iterations may vary

## [1] 2

We next summarize the results by printing out the 10 most important terms at the
centroid of each of the resulting clusters. We also show which essays of The Federalist
Papers belong to each cluster. Since we must perform the same operation for each
cluster, we use a loop (see section 4.1.1).
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## label each centroid with the corresponding term

colnames(km.out$centers) <- colnames(dtm.tfidf.hamilton)

for (i in 1:k) { # loop for each cluster

cat("CLUSTER", i, "\n")

cat("Top 10 words:\n") # 10 most important terms at the centroid

print(head(sort(km.out$centers[i, ], decreasing = TRUE), n = 10))

cat("\n")

cat("Federalist Papers classified:\n") # extract essays classified

print(rownames(dtm.tfidf.hamilton)[km.out$cluster == i])

cat("\n")

}

## CLUSTER 1

## Top 10 words:

## vacanc recess claus senat session

## 0.06953047 0.04437713 0.04082617 0.03408008 0.03313305

## fill appoint presid expir unfound

## 0.03101140 0.02211662 0.01852025 0.01738262 0.01684465

##

## Federalist Papers classified:

## [1] "fp67.txt"

##

## CLUSTER 2

## Top 10 words:

## armi upon militia revenu land

## 0.004557667 0.003878185 0.003680496 0.003523467 0.003410589

## militari war confederaci taxat esourc

## 0.003378875 0.003035943 0.003021217 0.002835844 0.002699460

##

## Federalist Papers classified:

## [1] "fp01.txt" "fp06.txt" "fp07.txt" "fp08.txt" "fp09.txt"

## [6] "fp11.txt" "fp12.txt" "fp13.txt" "fp15.txt" "fp16.txt"

## [11] "fp17.txt" "fp21.txt" "fp22.txt" "fp23.txt" "fp24.txt"

## [16] "fp25.txt" "fp26.txt" "fp27.txt" "fp28.txt" "fp29.txt"

## [21] "fp30.txt" "fp31.txt" "fp34.txt" "fp35.txt" "fp36.txt"

## [26] "fp60.txt" "fp80.txt" "fp85.txt"

##

## CLUSTER 3

## Top 10 words:

## senat presid claus offic impeach

## 0.008267389 0.007114606 0.005340963 0.005134467 0.005124293

## nomin governor appoint upon magistr

## 0.004568173 0.004490385 0.003965382 0.003748606 0.003667998

##

## Federalist Papers classified:

## [1] "fp32.txt" "fp33.txt" "fp59.txt" "fp61.txt" "fp65.txt"

## [6] "fp66.txt" "fp68.txt" "fp69.txt" "fp70.txt" "fp71.txt"
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## [11] "fp72.txt" "fp73.txt" "fp74.txt" "fp75.txt" "fp76.txt"

## [16] "fp77.txt" "fp78.txt" "fp79.txt" "fp84.txt"

##

## CLUSTER 4

## Top 10 words:

## court juri appel jurisdict suprem

## 0.05119100 0.03715999 0.01948060 0.01865612 0.01474737

## tribun trial cogniz inferior appeal

## 0.01448872 0.01383180 0.01343695 0.01155172 0.01139125

##

## Federalist Papers classified:

## [1] "fp81.txt" "fp82.txt" "fp83.txt"

Examining the 10 most important terms at the centroid of each cluster suggests that
cluster 2 relates to war and taxation, as indicated by terms like armi, taxat, and war,
while cluster 1 covers only one document. Cluster 3 addresses institutional design and
cluster 4 appears to be concerned with judicial systems. Comparing these topics with
the actual contents of The Federalist Papers shows a decent degree of validity for the
results of the k-means clustering algorithm.

We have been using The Federalist Papers to illustrate how text analyses can reveal
topics. Of course, since we can easily read all of The Federalist Papers, the automated
text analysis may not be necessary in this case. However, similar and more advanced
techniques can be applied to a much larger corpus that humans would struggle to read
in full over a short amount of time. In such situations, automated text analysis can play
an essential role in helping researchers extract meaningful information from textual
data.

5.1.4 AUTHORSHIP PREDICTION
As mentioned earlier, the authorship of some of The Federalist Papers is unknown.

We will use the 66 essays attributed to either Hamilton or Madison to predict the
authorship of the 11 disputed papers. Since each Federalist paper deals with a different
topic, we focus on the usage of articles, prepositions, and conjunctions. In particular,
we analyze the frequency of the following 10 words: although, always, commonly,
consequently, considerable, enough, there, upon, while, whilst. We
select these words based on the analysis presented in the academic paper that inspired
this section (see footnote 1). As a result, we must use the unstemmed corpus,
corpus.prep. We first compute the term frequency (per 1000 words) separately
for each term and document and then subset the resulting term-frequency matrix to
contain only these words.

## document-term matrix converted to matrix for manipulation

dtm1 <- as.matrix(DocumentTermMatrix(corpus.prep))

tfm <- dtm1 / rowSums(dtm1) * 1000 # term frequency per 1000 words
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## words of interest

words <- c("although", "always", "commonly", "consequently",

"considerable", "enough", "there", "upon", "while", "whilst")

## select only these words

tfm <- tfm[, words]

We then calculate the average term frequency separately for Hamilton andMadison
across each author’s entire body of documents.

## essays written by Madison: “hamilton” defined earlier

madison <- c(10, 14, 37:48, 58)

## average among Hamilton/Madison essays

tfm.ave <- rbind(colSums(tfm[hamilton, ]) / length(hamilton),

colSums(tfm[madison, ]) / length(madison))

tfm.ave

## although always commonly consequently

## [1,] 0.01756975 0.7527744 0.2630876 0.02600857

## [2,] 0.27058809 0.2006710 0.0000000 0.44878468

## considerable enough there upon while

## [1,] 0.5435127 0.3955031 4.417750 4.3986828 0.3700484

## [2,] 0.1601669 0.0000000 1.113252 0.2000269 0.0000000

## whilst

## [1,] 0.007055719

## [2,] 0.380113114

The results suggest that Hamilton prefers to use terms such as there and upon,
which Madison seldom uses, preferring instead to use consequently and whilst.
We will use the frequency of these 4 words as the predictors of a linear regression
model, where the outcome variable is the authorship of an essay. We first fit this
linear regression model to the 66 essays whose authorship is known to estimate the
coefficients. The resulting fitted model can then be used to predict the unknown
authorship of the 11 essays based on the 4 words’ frequencies. For the linear regression
model, we first create the outcome variable by coding essays authored by Hamilton as
1 and those written by Madison as -1. We then construct a data frame object, which
contains this authorship variable as well as the term-frequencymatrix tfm for all essays
whose authorship is known.

author <- rep(NA, nrow(dtm1)) # a vector with missing values

author[hamilton] <- 1 # 1 if Hamilton

author[madison] <- -1 # -1 if Madison

## data frame for regression

author.data <- data.frame(author = author[c(hamilton,madison)],

tfm[c(hamilton, madison), ])
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To predict the authorship, we use the term frequency of the 4 words selected based
on our preliminary analysis, i.e., upon, there, consequently, and whilst. The
data frame object we created above contains the term frequency of the 10 words
including these 4. We estimate the coefficients using the 66 essays with known
authorship.

hm.fit <- lm(author ~ upon + there + consequently + whilst,

data = author.data)

hm.fit

##

## Call:

## lm(formula = author ~ upon + there + consequently + whilst, data = author.data)

##

## Coefficients:

## (Intercept) upon there consequently

## -0.26288 0.16678 0.09494 -0.44012

## whilst

## -0.65875

The results are consistent with the preliminary analysis we conducted above. The es-
timated coefficients for upon and there are positive while those for consequently
and whilst are negative, implying that the first two words are associated with Hamil-
ton whereas the latter pair are associated with Madison. Interestingly, the estimated
coefficient for whilst has the largest magnitude. Holding the term frequency of the
other 3 words constant, one additional use of whilst (per 1000 words) in an essay
decreases the predicted authorship score by 0.66. To put this number into perspective,
we compute the standard deviation of fitted values using the fitted() and sd()
functions.

hm.fitted <- fitted(hm.fit) # fitted values

sd(hm.fitted)

## [1] 0.7180769

We find that the magnitude of this coefficient is large and close to 1 standard
deviation of fitted values. That is, one additional use of whilst (per 1000 words)
accounts for approximately 1 standard deviation of variation in our predicted value
for the authorship score.

5.1.5 CROSS VALIDATION
How well is this model fitting the data? We classify each essay using its fitted

value and compute the classification error. To do this, we compute the proportion of
positive fitted values among the essays authored by Hamilton. Similarly, we compute
the proportion of negative fitted values among those written by Madison. The results
represent the classification success rate (see section 4.1.3).
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## proportion of correctly classified essays by Hamilton

mean(hm.fitted[author.data$author == 1] > 0)

## [1] 1

## proportion of correctly classified essays by Madison

mean(hm.fitted[author.data$author == -1] < 0)

## [1] 1

The results show that the model perfectly classifies the authorship of these essays.
Like the coefficient of determination introduced in chapter 4, however, this measure of
prediction accuracy is based on in-sample prediction. That is, the same data we used to
fit themodel are again used for assessing the prediction accuracy. This is not necessarily
a good idea because we can overfit a model to the data at hand. Overfitting occurs
when a model captures idiosyncratic features of a specific sample while muddling up
systematic patterns that exist across different samples.

Let us instead consider out-of-sample prediction. The idea is that we use new
observations to assess the predictive performance of a model. In chapter 4, we
performed out-of-sample prediction by forecasting election results using preelection
polls. Similarly, here, we employ a procedure called leave-one-out cross validation.
Specifically, we set aside one observation and predict its outcome variable value
after fitting the model to the remaining observations. We repeat this procedure for
each observation in the sample and compute the classification error. Cross validation
enables us to assess the accuracy of model prediction without relying on in-sample
prediction.

Cross validation is a methodology to assess the accuracy of model prediction
without relying on in-sample prediction, which often leads to overfitting. Suppose
that we have a sample of n observations. Then, the leave-one-out cross-validation
procedure repeats the following steps for each observation i = 1, . . . , n:

1. Take out the i th observation and set it aside.
2. Fit the model using the remaining n − 1 observations.
3. Using the fitted model, predict the outcome for the i th observation

and compute the prediction error.
Finally, compute the average prediction error across n observations as a measure
of prediction accuracy.

In R, we can cross validate using a loop, where each iteration fits the model to
the data after excluding one observation, then predicts that observation’s outcome
variable value. A convenient way of setting aside the i th observation is to use the minus
sign, i.e., -i, to remove a certain row of the data frame. As we saw in section 4.3.4,
the predict() function can compute the predicted value Ŷ . In this function, the
newdata argument should specify a data frame whose only row is the observation of
interest.
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n <- nrow(author.data)

hm.classify <- rep(NA, n) # a container vector with missing values

for (i in 1:n) {

## fit the model to the data after removing the ith observation

sub.fit <- lm(author ~ upon + there + consequently + whilst,

data = author.data[-i, ]) # exclude ith row

## predict the authorship for the ith observation

hm.classify[i] <- predict(sub.fit, newdata = author.data[i, ])

}

The results below show that even when the cross validation procedure is used, the
model continues to perfectly classify the authorship of each essay.

## proportion of correctly classified essays by Hamilton

mean(hm.classify[author.data$author == 1] > 0)

## [1] 1

## proportion of correctly classified essays by Madison

mean(hm.classify[author.data$author == -1] < 0)

## [1] 1

Finally, we use this fitted model to predict the unknown authorship of the 11 essays.
When using predict() for prediction, don’t forget to coerce the term-frequency
matrix into a data frame through the as.data.frame() function. Note that this
function differs from the data.frame() function, which creates a data frame.

disputed <- c(49, 50:57, 62, 63) # 11 essays with disputed authorship

tf.disputed <- as.data.frame(tfm[disputed, ])

## prediction of disputed authorship

pred <- predict(hm.fit, newdata = tf.disputed)

pred # predicted values

## fp49.txt fp50.txt fp51.txt fp52.txt fp53.txt

## -0.99831799 -0.06759254 -1.53243206 -0.26288400 -0.54584900

## fp54.txt fp55.txt fp56.txt fp57.txt fp62.txt

## -0.56566555 0.04376632 -0.57115610 -1.22289415 -1.00675456

## fp63.txt

## -0.21939646

For ease of presentation, we plot the predicted values using different colors.
Red squares signify essays known to be written by Hamilton, while blue circles
indicate those by Madison. Black triangles represent papers with disputed authorship.
Points above (below) the dashed horizontal line, indicating zero, correspond to essays
classified as written by Hamilton (Madison).
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## fitted values for essays authored by Hamilton; red squares

plot(hamilton, hm.fitted[author.data$author == 1], pch = 15,

xlim = c(1, 85), ylim = c(-2, 2), col = "red",

xlab = "Federalist Papers", ylab = "Predicted values")

abline(h = 0, lty = "dashed")

## essays authored by Madison; blue circles

points(madison, hm.fitted[author.data$author == -1],

pch = 16, col = "blue")

## disputed authorship; black triangles

points(disputed, pred, pch = 17)
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The plot above uses gray squares instead of red squares for the essays authored by
Hamilton. See page C4 for the full-color version. As our plot shows, the model predicts
that Madison wrote all of the 11 essays except one. That one was barely classified as
written by Hamilton, having a predicted value near zero.

5.2 Network Data

Next, we consider network data, which describes relationships among units rather
than units in isolation. Examples include friendship networks among people, citation
networks among academic articles, and trade and alliance networks among countries.
Analysis of network data differs from the data analyses we have covered so far in that
the unit of analysis is a relationship.

5.2.1 MARRIAGE NETWORK IN RENAISSANCE FLORENCE
We introduce the basic concepts and methods for network data by analyzing a well-

known data set about the marriage network in Renaissance Florence.7 The CSV data

7 This section is in part based on John F. Padgett and Christopher K. Ansell (1993) “Robust action and the rise
of the Medici, 1400–1434.” American Journal of Sociology, vol. 98, no. 6, pp. 1259–1319.
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Table 5.3. Florence Marriage Network Data.

FAMILY ACCIAIUOL ALBIZZI · · · LAMBERTES MEDICI · · · STROZZI TORNABUON

ACCIAIUOL 0 0 · · · 0 1 · · · 0 0

ALBIZZI 0 0 · · · 0 1 · · · 0 0
...

...
...

LAMBERTES 0 0 · · · 0 0 · · · 0 0

MEDICI 1 1 · · · 0 0 · · · 0 1
...

...
...

STROZZI 0 0 · · · 0 0 · · · 0 0

TORNABUON 0 0 · · · 0 1 · · · 0 0

Note: The data are in the form of an adjacency matrix where each entry represents whether a family in its row
has a marriage relationship with another family in its column.

file, florentine.csv, contains an adjacency matrix whose entries represent the
existence of relationships between two units (one unit represented by the row and the
other represented by the column). Specifically, there are 16 elite Florentine families in
the data, leading to a 16×16 adjacencymatrix. If the (i, j ) entry of this adjacencymatrix
is 1, then it implies that the i th and j th Florentine families had a marriage relationship.
In contrast, a value of 0 indicates the absence of a marriage. Table 5.3 displays part of
this data set. Below, we print out the part of the adjacency matrix corresponding to the
first 5 families.

## the first column "FAMILY" of the CSV file represents row names

florence <- read.csv("florentine.csv", row.names = "FAMILY")

florence <- as.matrix(florence) # coerce into a matrix

## print out the adjacency (sub)matrix for the first 5 families

florence[1:5, 1:5]

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN
## ACCIAIUOL 0 0 0 0 0
## ALBIZZI 0 0 0 0 0
## BARBADORI 0 0 0 0 1
## BISCHERI 0 0 0 0 0
## CASTELLAN 0 0 1 0 0

The submatrix shows that there was only one marriage relationship among these
5 families. The marriage was between the Barbadori and Castellan families. This
adjacency matrix represents an undirected network because the matrix contains no
directionality. We could add directionality by incorporating which family proposed
a marriage if such information were available. In contrast, the Twitter data we analyze
later are an example of a directed network where any relationship between a pair of
units specifies a sender and a receiver. For an undirected network, the adjacency matrix
is symmetric: the (i, j ) element has the same value as the ( j, i) element. Finally, using
the rowSums() or colSums() function, we can check which family had the largest
number of marriage relationships.
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rowSums(florence)

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

## 1 3 2 3 3 1

## GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI

## 4 1 6 1 3 0

## RIDOLFI SALVIATI STROZZI TORNABUON

## 3 2 4 3

The result shows that the Medici family had 6 marriage relationships. It turns out
that through this marriage network, the Medici family made themselves the most
powerful faction in Renaissance Florence and eventually took over the state.

Network data carry information about the relationships between units.
A directed network contains directionality, with senders and receivers, whereas
an undirected network does not. An adjacency matrix, whose entries indicate
the existence or absence of a relationship between two units, is one way to
represent network data. An undirected network yields a symmetric adjacency
matrix, whereas a directed network does not.

5.2.2 UNDIRECTED GRAPH AND CENTRALITY MEASURES
The most common tool for visualizing network data is a graph, which is also a

mathematical object, as well as a visualization tool. A graph G consists of a set of nodes
(or vertices) V and a set of edges (or ties) E , i.e., G = (V, E ). A node represents
an individual unit, or a family in our current example, and is typically depicted as
a solid circle. An edge, on the other hand, represents the existence of a relationship
between any pair of nodes (e.g., a marriage relationship between two families) via a
line connecting those nodes.

The igraph package makes it easy to visualize network data as a graph. Be
sure to install the package if you have not done so already. We first use the
graph.adjacency() function to turn an adjacency matrix into an igraph object,
meaning an object that the igraph package can use. We set the mode argument
to "undirected" since we are analyzing an undirected network. We also specify
diag = FALSE to indicate the assumption that there is no marriage within a family,
resulting in a value of zero for every diagonal element of the adjacency matrix. Finally,
we can visualize themarriage network data as a graph by applying the plot() function
to the igraph object.

library("igraph") # load the package

florence <- graph.adjacency(florence, mode = "undirected", diag = FALSE)

plot(florence) # plot the graph
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TheMedici family appears to occupy the center of the Florentine marriage network,
being connected to various parts of the graph. We now introduce a variety of graph-
based measures that can quantify centrality, or the extent to which each node is
connected to other nodes and appears in the center of a graph. The number of edges, or
degree, is perhaps the most crude measure of how well a node is connected to the other
nodes in a graph. Figure 5.2a illustrates this measure using a simple undirected network
example, where degree is indicated as an integer value within each node. Above, we
found that the Medici family had the largest number of marriage relationships, so it
has the highest degree. The degree of every node can be calculated by applying the
degree() function to the igraph object.

degree(florence)

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

## 1 3 2 3 3 1

## GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI

## 4 1 6 1 3 0

## RIDOLFI SALVIATI STROZZI TORNABUON

## 3 2 4 3

Degree is problematically a local measure because it simply counts the number of
edges that come out of a given node. As a result, it does not account for the structure
of the graph beyond its immediate neighbors. As an alternative, we can count the sum
of edges from a given node to all other nodes in a graph, including the ones that are not
directly connected. This measure, called farness, describes how far apart a given node is
from each one of all other nodes in the graph. This contrasts with degree, which counts
the number of connected nodes. The inverse of farness, closeness, represents another
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Figure 5.2. Degree, Closeness, and Betweenness in an Undirected Network. This simple
example of an undirected network illustrates three alternative measures of centrality:
degree, closeness, and betweenness.

measure of centrality. The closeness for node v is defined as

closeness(v) = 1
farness(v)

= 1∑
u∈V, u �=v distance between v and u

,

where the summation is taken over all nodes other than v itself. The distance between
two nodes is the number of edges in the shortest path, which is the shortest sequence
of connected nodes, between the two nodes of interest. Figure 5.2b shows the values of
this measure for each node in a simple example of an undirected network. In R, we can
use the closeness() function to compute this measure.

closeness(florence)

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN

## 0.018518519 0.022222222 0.020833333 0.019607843 0.019230769

## GINORI GUADAGNI LAMBERTES MEDICI PAZZI

## 0.017241379 0.021739130 0.016949153 0.024390244 0.015384615

## PERUZZI PUCCI RIDOLFI SALVIATI STROZZI

## 0.018518519 0.004166667 0.022727273 0.019230769 0.020833333

## TORNABUON

## 0.022222222

As with degree, we find that the Medici family has the largest value of closeness.
To facilitate the interpretation of this measure, we can calculate the average number of
edges from a given node to another node. This is done by dividing the farness by the
number of other nodes on a graph. In the current example, we have a total of 16 nodes
and so we divide the farness by 15. The results below imply that on average, there are
2.7 edges between the Medici family and another family in this network, which is the
lowest among all families considered in this network data.
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1 / (closeness(florence) * 15)

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

## 3.600000 3.000000 3.200000 3.400000 3.466667 3.866667

## GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI

## 3.066667 3.933333 2.733333 4.333333 3.600000 16.000000

## RIDOLFI SALVIATI STROZZI TORNABUON

## 2.933333 3.466667 3.200000 3.000000

A different type of centrality measure is betweenness. According to this measure,
a node is considered to be central if it is responsible for connecting other nodes. In
particular, if we assume that communication between a pair of nodes occurs through
the shortest path between them, a node that lies on many such shortest paths may
possess special leverage within a network. For a given node v, we calculate betweenness
in three steps. First, compute the proportion of the shortest paths between two
other nodes, t and u, that contain v. For example, two shortest paths occur between
the Albizzi family and Tornabuon family, but we want only the proportion that
contain v. Second, calculate this proportion for every unique pair of nodes t and u
in the graph, excluding v. Third, sum all proportions. The formal definition is given by

betweenness(v)

=
∑

(t,u)∈V, t �=v, u �=v

number of shortest paths that contain node v

number of shortest paths between nodes t and u
.

Figure 5.2c illustrates this centrality measure in the same undirected network example
used for the other two measures.

The betweenness() function can be used to compute this measure. We find that
by far, the Medici family has the highest value of betweenness. In fact, since any given
node can be uniquely paired with 105 other nodes, theMedici family lies in the shortest
path of more than 45% of all possible pairs of other nodes.

betweenness(florence)

## ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI

## 0.000000 19.333333 8.500000 9.500000 5.000000 0.000000

## GUADAGNI LAMBERTES MEDICI PAZZI PERUZZI PUCCI

## 23.166667 0.000000 47.500000 0.000000 2.000000 0.000000

## RIDOLFI SALVIATI STROZZI TORNABUON

## 10.333333 13.000000 9.333333 8.333333

A graph is another way to represent network data where nodes (vertices) represent
units and an edge (or tie) between two nodes indicates that a relationship
exists between them. There are various centrality measures, including degrees,
closeness, and betweenness. These measures evaluate the extent to which each
node plays a central role in a graph.
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We visualize the Florentine marriage network data by making the size of each node
proportional to two centrality measures, closeness and betweenness. The values of
closeness are relatively small, and so we multiply them by 1000 in order to enlarge
the nodes of the graph.

plot(florence, vertex.size = closeness(florence) * 1000,

main = "Closeness")

plot(florence, vertex.size = betweenness(florence),

main = "Betweenness")
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The graphs illustrate that the Medici family stands out especially in terms of
betweenness, while the closeness measure suggests they are one of several well-
connected families. In sum, using three measures of centrality—degree, closeness, and
betweenness—we find that the Medici family is the most connected and central in
the network of Florentine marriage relationships. In Renaissance Florence, the Medici
family had the largest number of marriage relationships, was closely connected to other
families, and occupied a critical position in marriages among other families.

5.2.3 TWITTER-FOLLOWING NETWORK
The Florentine marriage network data exemplify an undirected network where

each edge has no directionality. Next, we analyze Twitter-following data among
US senators as directed network data. In this data set, an edge represents an instance
of a senator following another senator’s Twitter account.8 The data consist of two
files, one listing pairs of the Twitter screen names of the following and followed
politicians, twitter-following.csv, and the other containing information about

8 This data set is generously provided by Pablo Barberá.
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Table 5.4. Twitter Following Data.

Variable Description

Twitter-following data
following Twitter screen name of the following senator
followed Twitter screen name of the followed senator

Twitter senator data
screen_name Twitter screen name
name name of senator
party party (D = Democrat, R = Republican, I = Independent)
state state abbreviation

Note: The data are in two files, one listing the pairs of following and followed senators and the
other containing information about each senator.

each politician, twitter-senator.csv. Table 5.4 lists the names and descriptions
of variables in these two data files.

twitter <- read.csv("twitter-following.csv")

senator <- read.csv("twitter-senator.csv")

We begin by creating an adjacency matrix with these two data sets. For directed
network data, the (i, j )th element of the adjacency matrix is 1 if an edge connects node
i to node j . A value of 0 indicates the absence of any relationship. Consequently, unlike
the case of undirected network data, the adjacency matrix is asymmetric: the (i, j )th
element of this matrix may not equal its ( j, i)th element. We create this adjacency
matrix by initializing it with a matrix of zeros and then changing the value of its (i, j )th
element from 0 to 1 if the i th politician follows the j th politician.

n <- nrow(senator) # number of senators

## initialize adjacency matrix

twitter.adj <- matrix(0, nrow = n, ncol = n)

## assign screen names to rows and columns

colnames(twitter.adj) <- rownames(twitter.adj) <- senator$screen_name

## change “0” to “1” when edge goes from node “i” to node “j”

for (i in 1:nrow(twitter)) {

twitter.adj[twitter$following[i], twitter$followed[i]] <- 1

}

Finally, as before, we use the graph.adjacency() function to turn the ad-
jacency matrix into an igraph object. This time, however, we need to specify its
mode argument as "directed" to indicate that the input is a directed network
data set.
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Figure 5.3. Degree, Closeness, and Betweenness in a Directed Network. This simple
example of directed network data illustrates three alternative measures of centrality:
degree, closeness, and betweenness.

twitter.adj <- graph.adjacency(twitter.adj, mode = "directed", diag = FALSE)

5.2.4 DIRECTED GRAPH AND CENTRALITY
We can define the three centrality measures discussed earlier for a directed network.

We now have two types of degree measures. The sum of edges coming to a node (i.e.,
the number of times a politician’s Twitter account is followed by another politician)
is called indegree, whereas the sum of edges coming out of a node (i.e., the number of
times a politician follows the Twitter account of another politician) is called outdegree.
Figures 5.3a and 5.3b illustrate the two degree measures using a simple directed
network. The degree() function accepts an argument mode with three options,
"in" for indegree, "out" for outdegree, and "total" (the default when mode is
unspecified) for total degree, which is the sum of indegree and outdegree. We compute
and store indegree and outdegree as additional variables in the senator data frame.
By construction, the twitter.adj matrix has the same ordering of senators as the
senator data frame. As a result, one can insert the output of the degree() function
without sorting them.
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senator$indegree <- degree(twitter.adj, mode = "in")

senator$outdegree <- degree(twitter.adj, mode = "out")

Next, we extract the cases with the 3 greatest values of indegree and outdegree. To do
this, we use the order() function, which returns the ordering index vector. Like the
sort() function, the order() function allows one to sort in decreasing or increasing
order by specifying the decreasing argument as TRUE or FALSE, respectively. The
key difference is that the order() function returns the ordering index vector while
the sort() function returns the ordered vector itself. This ordering index can then be
used to extract details about the cases of interest. Recall from section 3.7.2 that the $
operator extracts an element from a list. Below, we identify the 3 politicians who have
the greatest values of indegree and another set of 3 politicians who have the greatest
values of outdegree.

in.order <- order(senator$indegree, decreasing = TRUE)

out.order <- order(senator$outdegree, decreasing = TRUE)

## 3 greatest indegree

senator[in.order[1:3], ]

## screen_name name party state indegree

## 68 SenPatRoberts Pat Roberts R KS 63

## 8 SenJohnBarrasso John Barrasso R WY 60

## 75 SenStabenow Debbie Stabenow D MI 58

## outdegree

## 68 68

## 8 87

## 75 43

## 3 greatest outdegree

senator[out.order[1:3], ]

## screen_name name party state indegree

## 57 lisamurkowski Lisa Murkowski R AK 55

## 8 SenJohnBarrasso John Barrasso R WY 60

## 43 SenatorIsakson Johnny Isakson R GA 22

## outdegree

## 57 88

## 8 87

## 43 87

The other two measures of centrality introduced above, closeness and betweenness,
can be defined for directed network data as well. There are three ways to define a path
from one node to another. We can ignore directionality as in the case of undirected
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networks or incorporate it in one of two ways: traveling along an outgoing path
in its direction, or traveling along an incoming path against its direction. Closeness
for incoming paths corresponds to indegree, while closeness for outgoing paths
corresponds to outdegree. Figures 5.3c and 5.3d illustrate the closeness measures based
on incoming and outgoing paths, respectively.

To compute closeness in R, therefore, the closeness() function has the mode
argument, which can take either "in" (incoming path), "out" (outgoing path),
or "total" (ignore directionality). Betweenness, however, sees only two options
(direct = TRUE or FALSE), because the distinction between incoming and outgo-
ing paths does not make sense from the perspective of a node in the path between
two other nodes (see figure 5.3e). In particular, the betweenness() function
takes a logical value for the directed argument, indicating whether to consider
directionality. Below, we first graphically compare two closeness measures (incoming
versus outgoing path) and then compare directed betweenness against undirected
betweenness using another plot. Before making these plots, we set the parameters for
colors and symbols based on party. Specifically, we use blue triangles for Democrats,
red circles for Republicans, and black crosses for Independents.

n <- nrow(senator)

## color: Democrats = blue, Republicans = red, Independent = black

col <- rep("red", n)

col[senator$party == "D"] <- "blue"

col[senator$party == "I"] <- "black"

## pch: Democrats = triangle, Republicans = circle, Independent = cross

pch <- rep(16, n)

pch[senator$party == "D"] <- 17

pch[senator$party == "I"] <- 4

Using these color and symbol parameters, we are now ready to make the plots.

## plot for comparing two closeness measures (incoming vs. outgoing)

plot(closeness(twitter.adj, mode = "in"),

closeness(twitter.adj, mode = "out"), pch = pch, col = col,

main = "Closeness", xlab = "Incoming path", ylab = "Outgoing path")

## plot for comparing directed and undirected betweenness

plot(betweenness(twitter.adj, directed = TRUE),

betweenness(twitter.adj, directed = FALSE), pch = pch, col = col,

main = "Betweenness", xlab = "Directed", ylab = "Undirected")
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The plots below use solid gray circles for Republicans instead of red gray circles. See
page C4 for the full-color version.
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There is little association between the two closeness measures based on incoming
and outgoing paths. This suggests that in this Twitter network, a senator’s closeness to
other senators in terms of being followed by them has little relationship to closeness
based on the same senator following them. Interestingly, however, the betweenness
measure is quite similar, regardless of whether one incorporates directionality. The
two betweenness measures suggest that several Republican senators are well connected
and central to the network (see the upper-right corner of the right-hand plot).

As a final alternative measure of centrality, we introduce PageRank . PageRank was
developed by the cofounders of Google, Sergey Brin and Larry Page, to optimize the
ranking of websites for their search engine outcomes. PageRank is computed using
an iterative algorithm. In section 3.7, we saw k-means clustering as an example of an
iterative algorithm. PageRank is based on the idea that nodes with a greater number
of incoming edges are more important. Intuitively, we can think of incoming edges as
votes of support. In the Twitter example, those senators who have a large number of
followers are seen as more important. Furthermore, if a node has an incoming edge
from another node with a large number of incoming edges, it results in a greater value
of PageRank than if it has an incoming edge from a node with fewer incoming edges.
In other words, if the Twitter account of a politician is followed by another politician
whose account has many followers, they receive a larger PageRank than they would if
followed by a politician with fewer followers. Finally, we note that the sum of PageRank
values across all nodes equals 1.

The algorithm begins by assigning a set of initial PageRank values to all nodes. At
each iteration, the PageRank value for node j will be updated using

PageRank j = 1 − d
n

+ d ×
n∑

i=1

Ai j × PageRanki
outdegreei︸ ︷︷ ︸

“vote’’ from node i to node j

. (5.2)
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In this equation, Ai j is the (i, j )th element of the adjacency matrix indicating whether
or not an edge connects node i to node j , d is a constant to be specified (typically
set to 0.85), and n is the number of nodes. The equation shows that the PageRank for
a given node j equals the sum of “votes” from other nodes that have an incoming
edge into node j . If there is no edge from node i to node j , then Ai j = 0, and
therefore no vote is given to node j from node i . However, if Ai j = 1, then a vote
from node i to node j is equal to the PageRank value of node i divided by node i ’s
outdegree. This means that each node must equally allocate its PageRank value across
all other nodes to which it has outgoing edges. For example, if a node has a PageRank
value of 0.1 and has two outgoing edges, then each receiver obtains 0.05 from this
node. This iterative algorithm stops when the PageRank values for all nodes no longer
change.

There are several centrality measures for directed networks, including indegree
and outdegree, closeness (based on incoming edges, outgoing edges, or both), and
betweenness (with or without directionality). PageRank is an iterative algorithm
that produces a centrality measure where each node equally allocates its “votes” to
other connected nodes.

In R, we can compute PageRank by the page.rank() function. The function can
also be applied to an undirected network by setting the directed argument to FALSE
(the default value is TRUE). The output object is a list that includes a numeric vector of
PageRank, as an element called vector.

senator$pagerank <- page.rank(twitter.adj)$vector

Below, we visualize usage of the Twitter network among US senators by setting
node size proportional to PageRank. The plot() function for adjacency matrices
takes several arguments, including vertex.size (to adjust the size of each node),
vertex.color (to adjust the color of each node), vertex.label (to specify the
label of each node), edge.arrow.size (to adjust the size of each edge’s arrow), and
edge.width (to adjust the width of each edge). See ?igraph.plotting for more
details.

## “col” parameter is defined earlier

plot(twitter.adj, vertex.size = senator$pagerank * 1000,

vertex.color = col, vertex.label = NA,

edge.arrow.size = 0.1, edge.width = 0.5)
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The plot above uses solid gray circles for Republicans instead of red gray circles.
See page C5 for the full-color version. The plot shows that this Twitter network is
quite dense with many edges connecting senators. While Republican senators appear
to have slightly greater PageRank values than Democrats, the partisan difference is
minor.

To better understand the algorithm, we consider a function that updates the
PageRank at each iteration according to equation (5.2). Let n be the number of nodes
in a graph, A be an n × n adjacency matrix, d be a constant, and pr be a vector of
PageRank values from the previous iteration. Then, this function can be defined as
follows.

PageRank <- function(n, A, d, pr) { # function takes 4 inputs

deg <- degree(A, mode = "out") # outdegree calculation

for (j in 1:n) {

pr[j] <- (1 - d) / n + d * sum(A[ ,j] * pr / deg)

}

return(pr)

}

We will apply this function to the simple network used in figure 5.3. We will use
the while() loop so that the algorithm stops when the differences in PageRank
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The full-color version of the plots on page 99 in section 3.6.1.

 The full-color version of the plot on page 100 in section 3.6.1.
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The full-color version of figure 4.1 on page 124.

 The full-color version of the plots on page 114 in section 3.7.3.
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 The full-color version of the plot on page 138 in section 4.1.3.  

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

Facial competence and vote share

Competence scores for Democrats

D
em

oc
ra

tic
 m

ar
gi

n 
in

 v
ot

e 
sh

ar
e

 The full-color version of the plot on page 141 in section 4.2.1.
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The full-color version of the plot on page 205 in section 5.1.5.
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The full-color version of the plots on page 216 in section 5.2.4.
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The full-color version of the plot on page 218 in section 5.2.2.
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The full-color version of the maps on page 229 in section 5.3.4.

The full-color version of figure 5.5 on page 222.
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The full-color version of the maps on page 230 in section 5.3.4.
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values between two successive iterations become negligible. The while loop takes the
syntax

while (condition) {

LOOP CONTENTS HERE

}

where the loop contents will be executed repeatedly so long as the conditional
statement, condition, is evaluated to be TRUE. In our application, we will compute
themaximum absolute difference in PageRank values between two successive iterations
and stop the algorithm when this becomes less than a prespecified threshold. To test
this script, we first construct an adjacency matrix with arbitrary values.

nodes <- 4

## adjacency matrix with arbitrary values

adj <- matrix(c(0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0),

ncol = nodes, nrow = nodes, byrow = TRUE)

adj

## [,1] [,2] [,3] [,4]

## [1,] 0 1 0 1

## [2,] 1 0 1 0

## [3,] 0 1 0 0

## [4,] 0 1 0 0

adj <- graph.adjacency(adj) # turn it into an igraph object

To implement the PageRank algorithm, we set the starting values and specify the
constant d in the algorithm (we choose 0.85). We then use the while() loop to
iteratively run the algorithm until a convergence criterion is satisfied. For the conver-
gence criterion, we use 0.001 as the threshold for the maximal absolute difference in
the PageRank values between two successive iterations. We use equal PageRank values
across nodes as their starting values.

d <- 0.85 # typical choice of constant

pr <- rep(1 / nodes, nodes) # starting values

## maximum absolute difference; use a value greater than threshold

diff <- 100

## while loop with 0.001 being the threshold

while (diff > 0.001) {

pr.pre <- pr # save the previous iteration

pr <- PageRank(n = nodes, A = adj, d = d, pr = pr)

diff <- max(abs(pr - pr.pre))

}



220 Chapter 5: Discovery

pr

## [1] 0.2213090 0.4316623 0.2209565 0.1315563

The result shows that the second observation has the highest PageRank value.
This makes sense because, as shown in the adjacency matrix, this observation has the
greatest number of incoming edges, represented by the second column.

5.3 Spatial Data

In addition to texts and networks, we introduce another type of data, spatial data.
Spatial data are best analyzed by visualization through maps. This chapter covers two
types of spatial data. One is spatial point data, which can be plotted as a set of points
on a map. The other is spatial polygon data, which represent a sequence of connected
points on a map corresponding to the boundaries of certain areas such as counties,
districts, and provinces. We also consider spatial–temporal data, which are a set of
spatial point or polygon data recorded over time, revealing changes in spatial patterns
over time.

5.3.1 THE 1854 CHOLERA OUTBREAK IN LONDON
In his book, Mode of Communication of Cholera, a British physician John Snow

demonstrated the effective use of maps for visualizing the spatial distribution of fatal
cholera cases. Snow collected the spatial point data about fatal cases in the Soho
neighborhood of London during the 1854 outbreak and plotted this information on
a map. Figure 5.4 reproduces the original map. Black rectangle areas indicate fatal
cholera cases, which were found to cluster around the Broad Street water pump located
at the center of the map. All water pumps are also indicated by solid circles and labeled
as such on the map.

From this map, Snow discovered that fatal cholera cases were clustered on and
around Broad Street. He speculated that cholera was spread by sewage-contaminated
water, a theory the authorities and the water company were reluctant to believe. After
extensive research that included close inspection of water and interviews with local
residents, Snow concluded that the water pump at the corner of Broad and Cambridge
Streets was the source of the cholera outbreak. He concluded by writing,

The result of the inquiry then was, that there had been no particular outbreak or
increase of cholera, in this part of London, except among the persons who were
in the habit of drinking the water of the above-mentioned pump-well. (p. 40)

Snow also employed a “grand natural experiment” to show that the water supply
of the Southwark and Vauxhall Company was responsible for the spread of cholera in
London. Figure 5.5 reproduces the spatial polygon map that Snow used to visualize
the area of the natural experiment, meaning a situation in the world that resembles an
experiment without intervention from researchers. The map shows that the Lambeth
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Figure 5.4. John Snow’s Map of Fatal Cholera Cases in London. Black rectangle areas
indicate fatal cholera cases, which were found to cluster around the Broad Street water
pump. All water pumps are also indicated on the map. Original source: John Snow (1855)
Mode of Communication of Cholera. London: John Churchill, New Burlington Street.

Company supplied cleaner water to the neighborhoods along the River Thames (in-
dicated by the blue region), whereas the Southwark and Vauxhall Company provided
contaminated water to the area further south (indicated by the red region). See page C6
for the full-color version. Snow argued that the overlapping area represented a natural
experiment where two companies competed for customers: some people received their
water supply from one company while their neighbors received water from the other
company. Assuming that the two groups of customers were alike in all other respects,
any difference in their cholera rates resulted from the choice of company.

After much research, Snow concluded that probably no confounder affected this
natural experiment. Based on the discussion in section 2.5.2, confounding factors
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Figure 5.5. John Snow’s Map of the Natural Experiment. The map shows the area of
the natural experiment where two water companies (the Lambeth Company and the
Southwark and Vauxhall Company) compete for customers. This area is represented by
the overlap of blue (Lambeth) and red (Southwark and Vauxhall) regions as shown in the
full-color version of this figure on page C6.

in this context refer to the variables associated with water companies and cholera
outbreak rates of a neighborhood. He describes this experiment succinctly as follows:

The mixing of the supply is of the most intimate kind. The pipes of each
Company go down all the streets, and into nearly all the courts and alleys. A few
houses are supplied by one Company and a few by the other, according to the
decision of the owner or occupier at that time when the Water Companies were
in active competition. In many cases a single house has a supply different from
that on either side. Each Company supplies both rich and poor, both large
houses and small; there is no difference either in the condition or occupation of
the persons receiving the water of the different Companies. . . .

The experiment, too, was on the grandest scale. No fewer than three hundred
thousand people of both sexes, of every age and occupation, and of every rank
and station, from gentlefolks down to the very poor, were divided into two
groups without their choice, and, in most cases, without their knowledge; one
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group being supplied with water containing the sewage of London, and amongst
it, whatever might have come from the cholera patients, the other group having
water quite free from such impurity. (pp. 74–75)

By matching the addresses of persons dying of cholera with the companies that
supplied them water, Snow was able to show that the overwhelming majority of deaths
had occurred in the households with water supplied by the Southwark and Vauxhall
Company.

Snow’s book illustrates the power of spatial data analysis. In particular, the visualiza-
tion of spatial data through maps enables researchers to discover previously unknown
patterns and present their findings in a convincing manner.

5.3.2 SPATIAL DATA IN R
In chapter 4, we analyzed the 2008 US presidential election. Figure 4.1 presents a

map of the Electoral College, efficiently visualizing the outcome of the election. This
is an example of spatial polygon data, where each state represents a polygon whose
boundaries can be constructed by connecting a series of points. We can then color
each polygon or state blue (red) if Barack Obama (John McCain) won the plurality of
votes within that state.

In R, the maps package provides various mapping tools as well as many spatial
databases. The package contains a spatial database of various cities in the world.
For example, it includes a data frame of US cities called us.cities. Any built-in
data frame can be loaded by using the data() function. Below, we show the first
few observations of this data set, which contains the name (as the name variable),
state (country.etc), population (pop), latitude (lat), longitude (long), and
whether the city is the capital of the country (capital = 1), the capital of a state
(capital = 2), or neither (capital = 0).

library(maps)

data(us.cities)

head(us.cities)

## name country.etc pop lat long capital

## 1 Abilene TX TX 113888 32.45 -99.74 0

## 2 Akron OH OH 206634 41.08 -81.52 0

## 3 Alameda CA CA 70069 37.77 -122.26 0

## 4 Albany GA GA 75510 31.58 -84.18 0

## 5 Albany NY NY 93576 42.67 -73.80 2

## 6 Albany OR OR 45535 44.62 -123.09 0

Now we can add state capitals to the map of the United States. We can use the
map() function to access one spatial database and visualize the data therein. For
example, in order to plot the United States, we set the database argument to
"usa". Spatial points can be easily added to maps using the points() function with
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their longitude and latitude information as the inputs for the x and y coordinates,
respectively. Each state capital is represented by a solid circle whose size is proportional
to its population. We can add a title by using the title() function after a map is
drawn.

map(database = "usa")

capitals <- subset(us.cities, capital == 2) # subset state capitals

## add points proportional to population using latitude and longitude

points(x = capitals$long, y = capitals$lat, col = "blue",

cex = capitals$pop / 500000, pch = 19)

title("US state capitals") # add a title

�
US state capitals

As another example, we plot the state of California. We use the "state" database,
which contains the spatial polygon data about US states, and specify the regions
argument to "California".

map(database = "state", regions = "California")

We will add to a map of California the seven cities that have the largest populations.
To extract these cities from the data, we use the order() function as before (see
section 5.2.4).

cal.cities <- subset(us.cities, subset = (country.etc == "CA"))

sind <- order(cal.cities$pop, decreasing = TRUE)# order by population

top7 <- sind[1:7] # seven cities with largest population
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We now add these cities to the map using the points() function, as well as their
city names using the text() function.

map(database = "state", regions = "California")

points(x = cal.cities$long[top7], y = cal.cities$lat[top7], pch = 19)

## add a constant to longitude to avoid overlapping with circles

text(x = cal.cities$long[top7] + 2.25, y = cal.cities$lat[top7],

label = cal.cities$name[top7])

title("Largest cities of California")

Los Angeles CA

San Diego CA

San Jose CA
San Francisco CA

Long Beach CA

Fresno CA

Largest cities of California

Sacramento CA

It is instructive to consider what the spatial polygon data look like in R. To do
this, we can set the plot argument of the map() function to FALSE to suppress the
plotting. Then, the function will return a list object with a sequence of coordinates
saved as x (x-coordinate or longitude) and y (y-coordinate or latitude). Within the list,
NA separates different polygons whose names are stored as names. We use the US map
to illustrate this.

usa <- map(database = "usa", plot = FALSE) # save map

names(usa) # list elements

## [1] "x" "y" "range" "names"

Now, we can check the number of coordinates used to create the US map by
computing the length of vector x. We also display the first few after combining the
x- and y-coordinates into a matrix using the cbind() function.
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length(usa$x)

## [1] 7252

head(cbind(usa$x, usa$y)) # first five coordinates of a polygon

## [,1] [,2]

## [1,] -101.4078 29.74224

## [2,] -101.3906 29.74224

## [3,] -101.3620 29.65056

## [4,] -101.3505 29.63911

## [5,] -101.3219 29.63338

## [6,] -101.3047 29.64484

We observe that the map of the United States consists of 7252 pairs of coordinates.
The map() function connects these points to construct maps.

Spatial data contain information about patterns over space and can be visualized
throughmaps.While spatial point data represent the locations of events as points
on a map, spatial polygon data represent geographical areas by connecting points
on a map.

5.3.3 COLORS IN R
We next learn how to color maps. Color is important for visualization in general,

not simply for maps. So far, we have been specifying colors using names like "red"
or "blue". The only exception is section 3.7.3 where we used a set of integers
that correspond to different colors through the palette() function. In fact, R
knows the names of 657 different colors. To see them all, look at the output of the
colors() function.

allcolors <- colors()

head(allcolors) # some colors

## [1] "white" "aliceblue" "antiquewhite"

## [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"

length(allcolors) # number of color names

## [1] 657

However, R can produce many more colors than this. To refer to a color from the
full range of possible colors, we can use the hexadecimal color code. Hexadecimal is
a number system whose base is 16, with integers 0–9 and letters A–F representing
values from 0 to 15. A hexadecimal color code is a sequence of six characters beginning
with a hash sign (#). Each set of two digits represents the strength of the three
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primary colors—red, green, and blue, or RGB—with each taking a value from 0 to
255 (or one of 28 levels). For example, half-strength red and blue together yields
purple. This can be represented as RGB = (127, 0, 127). Recognizing that 127 is
equal to 7F in the base-16 numeral system, we arrive at the hexadecimal color code of
#7F007F.

In R, the rgb() function helps create hexadecimal color codes from numerical
values. The three arguments, red, green, and blue, take the intensity of each color,
ranging from 0 to 1, which gets translated into an integer value from 0 to 255 and
then represented as a hexadecimal numeral. In addition, we can create more than one
color code from rgb() at a time. The arguments can take vectors of length longer
than 1. Below are some examples of hexadecimal color code. There are also many
online sources that help us find the hexadecimal representation of a color. We start
with primary colors.

red <- rgb(red = 1, green = 0, blue = 0) # red

green <- rgb(red = 0, green = 1, blue = 0) # green

blue <- rgb(red = 0, green = 0, blue = 1) # blue

c(red, green, blue) # results

## [1] "#FF0000" "#00FF00" "#0000FF"

Black and white can be represented by 0% or 100% for each primary color,
respectively.

black <- rgb(red = 0, green = 0, blue = 0) # black

white <- rgb(red = 1, green = 1, blue = 1) # white

c(black, white) # results

## [1] "#000000" "#FFFFFF"

Finally, we can create purple (50% red and 50% blue) and yellow (100% red and
100% green). The rgb() function can take a vector of inputs, as illustrated in this
example.

rgb(red = c(0.5, 1), green = c(0, 1), blue = c(0.5, 0))

## [1] "#800080" "#FFFF00"

Another advantage of using hexadecimal color codes is that we can make the colors
(partly) transparent by adding two additional digits, from 00 to FF, to the end of a
hexadecimal color code. This enables us to control the level of transparency. Again, it
is easier to think about the intensity scale from 0 to 1 and use the rgb() function to
transform it to a hexadecimal color code. The function takes a fourth argument alpha,
which can be used for this purpose. An example is given here.
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## semitransparent blue

blue.trans <- rgb(red = 0, green = 0, blue = 1, alpha = 0.5)

## semitransparent black

black.trans <- rgb(red = 0, green = 0, blue = 0, alpha = 0.5)

Once we know the hexadecimal colors, we can use them (as a character object) in our
plots in the same way that we have been using named colors like "red" and "blue".
In the following plot, semitransparent circles can be easily distinguished even when
they overlap, whereas it is harder to distinguish between nontransparent circles. Note
that in this plot we suppress the default axis labels in order to avoid distraction by
setting the ann argument to FALSE in the plot() function.

## completely colored dots; difficult to distinguish

plot(x = c(1, 1), y = c(1, 1.2), xlim = c(0.5, 4.5), ylim = c(0.5, 4.5),

pch = 16, cex = 5, ann = FALSE, col = black)

points(x = c(3, 3), y = c(3, 3.2), pch = 16, cex = 5, col = blue)

## semitransparent; easy to distinguish

points(x = c(2, 2), y = c(2, 2.2), pch = 16, cex = 5, col = black.trans)

points(x = c(4, 4), y = c(4, 4.2), pch = 16, cex = 5, col = blue.trans)

1 2 3 4

1

2

3

4

5.3.4 US PRESIDENTIAL ELECTIONS
Now that we understand how color is represented in R, we can color maps. Here,

we color the map of the United States using the 2008 presidential election results. The
election data were introduced in chapter 4. The names and description of variables in
the data file pres08.csv are given in table 4.1.
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We will color each state in two ways. First, we use blue for the states won by Obama
and red for the states won by McCain. This will produce a map just like figure 4.1
with “blue and red states.” Second, we exploit the fact that various shades of purple
can be produced as a mixture of blue and red in the RGB color scheme. Specifically,
we compute the two-party vote share and set the intensity of blue as the Democratic
two-party vote share and that of red as the Republican two-party vote share. In this
way, the color of a state reflects the degree of support for Democratic and Republican
candidates. The following code chunk loads the data set, computes the two-party vote
shares, and sets the RGB color scheme for California based on its two-party vote share.

pres08 <- read.csv("pres08.csv")

## two-party vote share

pres08$Dem <- pres08$Obama / (pres08$Obama + pres08$McCain)

pres08$Rep <- pres08$McCain / (pres08$Obama + pres08$McCain)

## color for California

cal.color <- rgb(red = pres08$Rep[pres08$state == "CA"],

blue = pres08$Dem[pres08$state == "CA"],

green = 0)

We now color the map of California in two ways. First, we color it as a blue state
because Obama won California in 2008. Second, we color it using the RGB color
scheme based on the two-party vote share. To add color to a map, we must specify
the col argument. In addition, we set the fill argument to TRUE in order to fill each
state with the specified color.

## California as a blue state

map(database = "state", regions = "California", col = "blue",

fill = TRUE)

## California as a purple state

map(database = "state", regions = "California", col = cal.color,

fill = TRUE)

The right plot below uses gray instead of purple. See page C6 for the full-color
version.
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We will repeat this for all states using a loop. The map does not include Hawaii,
Alaska, and Washington DC, so we will skip those states. Note that we will set the add
argument to TRUE in order to add a color to each state. A loop is used because we color
one state at a time. We first use a dichotomized color scheme where the states Obama
won appear blue and those won by McCain are shown as red. In the second map, we
use the RGB color scheme based on the two-party vote share for each state. The code
chunks used for these two maps are almost identical. The only difference is the way in
which color is chosen for each state.

## USA as red and blue states

map(database = "state") # create a map

for (i in 1:nrow(pres08)) {

if ((pres08$state[i] != "HI") & (pres08$state[i] != "AK") &

(pres08$state[i] != "DC")) {

map(database = "state", regions = pres08$state.name[i],

col = ifelse(pres08$Rep[i] > pres08$Dem[i], "red", "blue"),

fill = TRUE, add = TRUE)

}

}

## USA as purple states

map(database = "state") # create a map

for (i in 1:nrow(pres08)) {

if ((pres08$state[i] != "HI") & (pres08$state[i] != "AK") &

(pres08$state[i] != "DC")) {

map(database = "state", regions = pres08$state.name[i],

col = rgb(red = pres08$Rep[i], blue = pres08$Dem[i],

green = 0), fill = TRUE, add = TRUE)

}

}

The maps below use gray scale. See page C7 for the full-color version.

The left-hand map shows that Obama wonmany states on theWest and East Coasts
whereas McCain was particularly strong in the Midwest. However, the right-hand map
illustrates that no state is completely dominated by either Democrats or Republicans.
Each state has both types of voters, and it is the winner-take-all electoral system that is
responsible for characterizing each state as either a blue or a red state.
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Table 5.5. Walmart Store Opening Data.

Variable Description

opendate opening date for the store
st.address street address of the store
city city of the store
state state of the store
type store type (Wal-MartStore, SuperCenter, DistributionCenter)
long longitude of the store
lat latitude of the store

Note: The data set contains spatial and temporal information about Walmart store openings from
the first opening on March 1, 1962 until August 1, 2006.

5.3.5 EXPANSION OF WALMART
Shifting from politics to business, we next examine the expansion of Walmart, a

successful American multinational chain of retail discount department and warehouse
stores.9 Walmart opened its first store in 1962 in Bentonville, Arkansas. Over the next
several decades, it opened many stores within the United States and then around the
world. Walmart has become one of the largest retail multinational companies in the
world. Table 5.5 shows the names and descriptions of variables in the Walmart store
opening data, walmart.csv. This data set contains spatial and temporal informa-
tion about Walmart store openings, from the first opening on March 1, 1962 until
August 1, 2006.

We begin by plotting all of the store locations on a map. The data set contains
three different types of stores, represented by the variable type. Wal-MartStore
represents a standard Walmart store, whereas SuperCenter is a standard Walmart
store as well as a full supermarket. Walmart Supercenters often include pharma-
cies, garden shops, car service centers, and other specialty centers. We also plot
DistributionCenter data, representing stores that distribute food and goods to
standard Walmart stores and Supercenters. To distinguish the three types of stores, we
use different colors—red for standardWalmart stores, green for Supercenters, and blue
for Distribution Centers. We make the colors transparent so that circles representing
different stores can overlap with each other. Distribution Centers, which are fewer than
the other two types, will be represented by larger circles so that they stand out. The
following code chunk defines these parameters.

walmart <- read.csv("walmart.csv")

## red = Wal-MartStore, green = SuperCenter, blue = DistributionCenter

walmart$storecolors <- NA # create an empty vector

walmart$storecolors[walmart$type == "Wal-MartStore"] <-

rgb(red = 1, green = 0, blue = 0, alpha = 1/3)

9 This section is in part based on Thomas J. Holmes (2011) “The diffusion of Wal-Mart and economies of
density.” Econometrica, vol. 79, no. 1, pp. 253–302.
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walmart$storecolors[walmart$type == "SuperCenter"] <-

rgb(red = 0, green = 1, blue = 0, alpha = 1/3)

walmart$storecolors[walmart$type == "DistributionCenter"] <-

rgb(red = 0, green = 0, blue = 1, alpha = 1/3)

## larger circles for DistributionCenter

walmart$storesize <- ifelse(walmart$type == "DistributionCenter", 1, 0.5)

Finally, we create a map and add Walmart store locations to it. We also include a
legend using the legend() function. To use this function, we specify the location of
the legend by setting the x and y coordinates and provide a vector of legend texts as
the legend argument. A box encloses the legend by default when the bty argument is
left unspecified, whereas setting the argument to "n" eliminates the box. As before, the
pch argument can be used to specify types of objects to plot. We choose solid circles
whose size can be controlled by the pt.cex argument.

## map with legend

map(database = "state")

points(walmart$long, walmart$lat, col = walmart$storecolors,

pch = 19, cex = walmart$storesize)

legend(x = -120, y = 32, bty = "n",

legend = c("Walmart", "Supercenter", "Distribution center"),

col = c("red", "green", "blue"), pch = 19, # solid circles

pt.cex = c(0.5, 0.5, 1)) # size of circles

The map below uses dark and light gray circles in place of red and green circles. See
page C7 for the full-color version.

Walmart
Supercenter
Distribution center

The map clearly shows the business strategy of Walmart. While Supercenters
are widespread throughout the Midwest and South, they appear less prevalent in
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the Northeast and the West Coast, as well as in urban centers more generally. In
these areas, Walmart has chosen not to expand past the standard discount store
format.

5.3.6 ANIMATION IN R
The previous analysis of Walmart store openings ignored the temporal dimension

even though the data set contains the opening date. By examining the spatial–temporal
patterns rather than spatial patterns alone, we can better understand how Walmart
expanded its stores over time. What visualization strategy should we employ to achieve
this goal? We can create a series of maps over time, showing all stores at various points
in time.

To do this, it is useful to define a function (see section 1.3.4) that subsets the data
given a specified date, and then creates a map of Walmart stores like the one shown
above. All we need to do is to include our previous code chunk in a function. Below,
we create this function, called walmart.map(). The function takes two inputs.
The first argument data takes a data frame, which should have a variable called
opendate representing the opening date of the store. This variable should belong
to the Date class. The second argument date takes another Date object defining
the point in time for which the map should be created. The function subsets all the
stores that opened on or before the specified date and then plots their locations on
a map.

walmart.map <- function(data, date) {

walmart <- subset(data, subset = (opendate <= date))

map(database = "state")

points(walmart$long, walmart$lat, col = walmart$storecolors,

pch = 19, cex = walmart$storesize)

}

Using this function, it is straightforward to create a map at any given point of time.
We create a map for every ten years.

walmart$opendate <- as.Date(walmart$opendate)

walmart.map(walmart, as.Date("1974-12-31"))

title("1975")

walmart.map(walmart, as.Date("1984-12-31"))

title("1985")

walmart.map(walmart, as.Date("1994-12-31"))

title("1995")

walmart.map(walmart, as.Date("2004-12-31"))

title("2005")

The following maps use dark and light gray circles in place of red and green circles.
See page C8 for the full-color version.
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1975 1985

1995 2005

Another method for visualizing spatial–temporal data like the above is animation,
which dynamically shows how geographical patterns change over time. The animation
package can show how Walmart has opened its stores at various locations at different
times. We first set the number of maps to be animated and then create a vector of
equally spaced dates from the beginning to the end of the data set.

n <- 25 # number of maps to animate

dates <- seq(from = min(walmart$opendate),

to = max(walmart$opendate), length.out = n)

We are now ready to animate. At its core, using the animation package involves little
more than writing a loop to create a series of maps over time. In fact, we need just one
extra function, saveHTML(), to wrap the loop. The function takes the R code chunk as
the main input, enclosed in curly braces { }, and then inserts all plots that are created
with the loop into an HTML file. The resulting HTML file can display the animation in
a web browser. Useful arguments of the saveHTML() function include htmlfile for
the HTML filename, title for the title of the animation, outdir for the name of the
directory where the resulting files will be saved, and autobrowse indicating whether
or not the output will be automatically displayed on a browser. In addition to HTML,
available formats include saveLatex() for LaTeX files and saveVideo() for video
files.

The following code chunk creates an animation and saves the HTML file
named walmart.html and all other files to the working directory. Note that the
saveHTML() function repeatedly calls the walmart.map() function we created
earlier through a loop. The getwd() function returns the path to the working

http://www.walmart.html
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directory, and specifying this function as the outdir input will save all output files
in that directory.

library("animation")

saveHTML({

for (i in 1:length(dates)) {

walmart.map(walmart, dates[i])

title(dates[i])

}

}, title = "Expansion of Walmart", htmlfile = "walmart.html",

outdir = getwd(), autobrowse = FALSE)

We can play the animation by opening a web browser and clicking File > Open
file... in the menu. While watching, we see quite clearly the Midwestern origins of
the Walmart franchise and its gradual spread throughout the region in the 1970s and
1980s. Particularly striking is the speed of the mid-1990s expansion throughout the rest
of the country, as well as when and where new Distribution Centers are established in
anticipation of regional expansion.

5.4 Summary

This chapter introduced types of data different from those we analyzed in the
previous chapters. We focused on how to discover systematic patterns in a variety
of data. We began by analyzing textual data under the bag-of-words assumption
that ignores the sequence of words. By focusing on the frequency of different terms
within and across documents, we can discover topics that underlie the corpus. We
introduced term frequency–inverse document frequency as a statistic that measures
the importance of each term in a particular document. Using The Federalist Papers as
an example, we also showed how the frequency of words can predict the authorship
of essays via a linear regression model. To assess prediction accuracy while avoiding
overfitting, we used cross validation (and in particular a leave-one-out cross validation
procedure).

The second type of data covered in this chapter was network data. We visualized
both directed and undirected network data with graphs, where nodes (or vertices)
represent units, and edges (or ties) between nodes represent the relationships between
them. We showed how to compute various centrality measures in order to identify
influential nodes within a given network. These measures include degree, closeness,
and betweenness. We also introduced a popular iterative algorithm called PageRank,
which forms the basis of the Google website ranking algorithm, as another way to
measure centrality. These methods were illustrated through the classic example of the
Florentine marriage network and a modern example of the Twitter-following network
among politicians.

Finally, we considered spatial and spatial–temporal data. The spatial dimension
splits into two types: spatial point and spatial polygon data. We showed how maps
can visualize spatial patterns effectively using John Snow’s famous study of a cholera
outbreak in 19th century London. Snow utilized a natural experiment to uncover
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Table 5.6. Constitution Preamble Data.

Variable Description

country country name with words separated by underscores
year year the constitution was created
preamble raw text of the preamble to the constitution

Note: The data set contains raw textual information about the preambles of
constitutions around the world.

the primary cause of the outbreak. We also used maps to visualize the outcome of
the US presidential election and the diffusion of Walmart stores over time. Like the
analysis of texts and networks, visualization plays a central role in spatial data analysis.
To investigate how spatial patterns change over time, we created an animation that
sequentially displayed a series of maps. This visualization effectively demonstrated the
expansion of Walmart stores in the United States over the last several decades.

5.5 Exercises

5.5.1 ANALYZING THE PREAMBLES OF CONSTITUTIONS
Some scholars argue that over the last few centuries, the US Constitution has

emerged, either verbatim or paraphrased, in numerous founding documents across
the globe.10 Will this trend continue, and how might one even measure constitutional
influence, anyway? One way is to see which constitutional rights (such as free speech)
are shared across the founding documents of different countries, and observe how
this commonality changes over time. An alternative approach, which we take in
this exercise, is to examine textual similarity among constitutions. We focus on
the preamble of each constitution, which typically states the guiding purpose and
principles of the rest of the constitution. Table 5.6 presents the names and descriptions
of the constitution preambles in constitution.csv.

1. First, let us visualize the data to better understand how constitutional docu-
ments differ. Start by importing the preamble data into a data frame, and then
preprocess the text. Before preprocessing, use the VectorSource() function
inside the Corpus() function. Create two data matrices for both the regular
document-term frequency, and for the tf–idf weighted term frequency. In both
cases, visualize the preamble to the US Constitution with a word cloud. How do
the results differ between the two methods? Note that we must normalize the tf–
idf weights by document size so that lengthy constitutions do not receive greater
weights.

10 This exercise is in part based on David S. Law and Mila Versteeg (2012) “The declining influence of the
United States Constitution.” New York University Law Review, vol. 87, no. 3, pp. 762–858 and Zachary Elkins,
Tom Ginsburg, and James Melton (2012) “Comments on law and Versteeg’s the declining influence of the United
States Constitution.” New York University Law Review, vol. 87, no. 6, pp. 2088–2101.
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Figure 5.6. Cosine Similarity of Two Vectors. Two two-dimensional vectors a and b have
a positive (negative) value of cosine similarity in the left (right) plot.

2. We next apply the k-means algorithm to the rows of the tf–idf matrix and identify
clusters of similar constitution preambles. Set the number of clusters to 5 and
describe the results. To make each row comparable, divide it by a constant such
that each row represents a vector of unit length. Note that the length of a vector
a = (a1, a2, . . . , an) is given by ||a|| =

√
a21 + a22 + · · · + a2n.

3. We will next see whether new foreign constitutions are more similar to the US
Constitution preamble than the existing ones. In the document-term matrix,
each document is represented as a vector of term frequencies. To compare two
documents, we define cosine similarity as the cosine of the angle θ between
the two corresponding n-dimensional vectors a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn). Formally, the measure is defined as

cosine similarity = cos θ = a · b
||a|| × ||b|| =

∑n
i=1 aibi√∑n

i=1 a2i
√∑n

i=1 b2i
.

The numerator represents the so-called dot product of a and b, while the
denominator is the product of the lengths of the two vectors. The measure
ranges from −1 (when the two vectors go in opposite directions) to 1 (when
they completely overlap). As illustrated in figure 5.6, two vectors have a positive
(negative) value of cosine similarity when they point in similar (different)
directions. The measure is zero when they are perpendicular to each other.

Below is a function that takes a vector a, alongside a collection of vectors or a
matrix b, and computes the cosine similarity between a and each row of b.

cosine <- function(a, b) {

## t() transposes a matrix ensuring that vector “a” is multiplied

## by each row of matrix “b”

numer <- apply(a * t(b), 2, sum)

denom <- sqrt(sum(a^2)) * sqrt(apply(b^2, 1, sum))

return(numer / denom)

}
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Table 5.7. International Trade Data.

Variable Description

country1 country name of exporter
country2 country name of importer
year year
exports total value of exports (in tens of millions of dollars)

Note: The data are given for 1900, 1920, 1940, 1955, 1980, 2000, and 2009.

Apply this function to identify the 5 constitutions whose preambles most resem-
ble that of the US Constitution.

4. We examine the influence of the US Constitution on other constitutions over
time. We focus on the postwar period. Sort the constitutions chronologically and
calculate, for every 10 years from 1960 until 2010, the average of cosine similarity
between the US Constitution and the constitutions that were created during the
previous decade. Plot the result. Each of these averages computed over time is
called amoving average. Does similarity tend to increase, decrease, or remain the
same over time? Comment on the pattern you observe.

5. We next construct directed, weighted network data based on the cosine similarity
of constitutions. Specifically, create an adjacency matrix whose (i, j )th entry
represents the cosine similarity between the i th and j th constitution preambles,
where the i th constitution was created in the same year or after the j th con-
stitution. This entry is zero if the i th constitution was created before the j th
constitution. Apply the PageRank algorithm to this adjacency matrix. Briefly
comment on the result.

5.5.2 INTERNATIONAL TRADE NETWORK
The size and structure of international trade flows vary significantly over time.11 The

volume of goods traded between countries has grown rapidly over the past century, as
technological advances have lowered the cost of shipping and countries have adopted
more liberal trade policies. At times, however, trade flows have decreased due to
disruptive events such as major wars and the adoption of protectionist trade policies.
In this exercise, we will explore some of these changes by examining the network
of international trade over several time periods. The data file trade.csv contains
the value of exports from one country to another in a given year. The names and
descriptions of variables in this data set are given in table 5.7.

11 This exercise is based in part on Luca De Benedictis and Lucia Tajoli (2011) “The world trade network.” The
World Economy, vol. 34, no. 8, pp. 1417–1454. The trade data are from Katherine Barbieri and Omar Keshk (2012)
Correlates of War Project Trade Data Set, version 3.0. Available at http://correlatesofwar.org.

http://correlatesofwar.org
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1. We begin by analyzing international trade as an unweighted, directed network.
For every year in the data set, create an adjacency matrix whose entry (i, j ) equals
1 if country i exports to country j . If this export is zero, then the entry equals 0.
We assume that missing data, indicated by NA, represents zero trade. Plot the
network density, which is defined over time as

network density = number of edges

number of potential edges
.

The graph.density() function can compute this measure given an adjacency
matrix. Interpret the result.

2. For the years 1900, 1955, and 2009, compute the measures of centrality based
on degree, betweenness, and closeness (based on total degree) for each year. For
each year, list the 5 countries that have the largest values of each of these centrality
measures. How do the countries on the lists change over time? Briefly comment
on the results.

3. We now analyze the international trade network as a weighted, directed network
in which each edge has a nonnegative weight proportional to its corresponding
trade volume. Create an adjacency matrix for such network data. For the years
1900, 1955, and 2009, compute the centrality measures from above for the
weighted trade network. Instead of degree, however, compute the graph strength,
which in this case equals the sum of imports and exports with all adjacent
nodes. The graph.strength() function can be used to compute this weighted
version of degree. For betweenness and closeness, we use the same function as
before, i.e., closeness() and betweenness(), which can handle weighted
graphs appropriately. Do the results differ from those of the unweighted network?
Examine the top 5 countries. Can you think of another way to calculate centrality
in this network that accounts for the value of exports from each country? Briefly
discuss.

4. Apply the PageRank algorithm to the weighted trade network, separately for
each year. For each year, identify the 5 most influential countries according
to this algorithm. In addition, examine how the ranking of PageRank values
has changed over time for each of the following 5 countries—United States,
United Kingdom, Russia, Japan, and China. Briefly comment on the patterns you
observe.

5.5.3 MAPPING US PRESIDENTIAL ELECTION RESULTS OVER TIME
The partisan identities of many states have been stable over time. For example,

Massachusetts is a solidly “blue” state, having pledged its electoral votes to the
Democratic candidate in 8 out of the last 10 presidential elections. On the other
extreme, Arizona’s electoral votes went to the Republican candidate in 9 of the same 10
elections. Still, geography can occasionally be a poor predictor of presidential elections.
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Table 5.8. County-Level US Presidential Election Data.

Variable Description

state full name of the 48 states (excluding Alaska, Hawaii, and
the District of Columbia)

county county name
year election year
rep popular votes for the Republican candidate
dem popular votes for the Democratic candidate
other popular votes for other candidates

For instance, in 2008, typically red states—including North Carolina, Indiana, and
Virginia—helped elect Barack Obama to the presidency.

In this exercise, we will again map the US presidential election results for 48 states.
However, our data will be more detailed in two respects. First, we will analyze data
from 14 presidential elections from 1960 to 2012, allowing us to visualize how the
geography of party choice has changed over time. Second, we will examine election
results at the county level, allowing us to explore the spatial distribution of Democratic
and Republican voters within states. The data file is available in CSV format as
elections.csv. Each row of the data set represents the distribution of votes in that
year’s presidential election from each county in the United States. Table 5.8 presents
the names and descriptions of variables in this data set.

1. We begin by visualizing the outcome of the 2008 US presidential election at the
county level. Begin with Massachusetts and Arizona and visualize the county-
level outcome by coloring counties based on the two-party vote share as done in
section 5.3.4. The color should range from pure blue (100% Democratic) to pure
red (100% Republican) using the RGB color scheme. Use the county database in
themaps package. The regions argument of the map() function enables us to
specify the state and county. The argument accepts a character vector, each entry
of which has the syntax state, county. Provide a brief comment.

2. Next, using a loop, visualize the 2008 county-level election results across the
United States as a whole. Briefly comment on what you observe.

3. We now examine how the geographical distribution of US presidential election
results has changed over time at the county level. Starting with the 1960 presi-
dential election, which saw Democratic candidate John F. Kennedy prevail over
Republican candidate Richard Nixon, use animation to visualize the county-level
election returns for each presidential election up to 2012. Base your code on what
you programmed to answer the previous question.

4. In this exercise, we quantify the degree of partisan segregation for each state. We
consider a state to be politically segregated if Democrats and Republicans tend
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to live in different counties. A common way to quantify the degree of residential
segregation is to use the dissimilarity index given by

dissimilarity index = 1
2

N∑

i=1

∣∣∣∣
di
D

− ri
R

∣∣∣∣ .

In the formula, di (ri ) is the number of Democratic (Republican) votes in the
i th county and D (R) is the total number of Democratic (Republican) votes in
the state. N represents the number of counties. This index measures the extent
to which Democratic and Republican votes are evenly distributed within states.
It can be interpreted as the percentage of one group that would need to move
in order for its distribution to match that of the other group. Using data on
Democratic and Republican votes from the 2008 presidential election, calculate
the dissimilarity index for each state. Which states are among the most (least)
segregated according to this measure? Visualize the result as a map. Briefly
comment on what you observe.

5. Another way to compare political segregation across states is to assess whether
counties within a state are highly unequal in terms of how many Democrats or
Republicans they have. For example, a state would be considered segregated if
it had many counties filled with Democrats and many with no Democrats at
all. In chapter 3, we considered the Gini coefficient as a measure of inequality
(see section 3.6.2). Calculate the Gini coefficient for each state based on the
percentage of Democratic votes in each county. Give each county the same
weight, disregarding its population size.Which states have the greatest (or lowest)
value of the index? Visualize the result using a map. What is the correlation
between the Gini index and the dissimilarity index you calculated above? How
are the two measures conceptually and empirically different? Briefly comment
on what you observe and explain the differences between the two indexes. To
compute the Gini index, use the ineq() function in the ineq package by setting
its argument type to "Gini".

6. Lastly, we examine how the degree of political segregation has changed in each
state over time. Use animation to visualize these changes. Briefly comment on the
patterns you observe.
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Probability

Probability is the very guide of life.
— Cicero, De Natura

Until now, we have studied how to identify patterns in data. While some patterns are
indisputably clear, in many cases we must figure out ways to distinguish systematic
patterns from noise. Noise, also known as random error, is the irrelevant variation that
occurs in every real-world data set. Quantifying the degree of statistical uncertainty of
empirical findings is the topic for the next chapter, but this requires an understanding
of probability. Probability is a set of mathematical tools that measure and model
randomness in the world. As such, this chapter introduces the derivation of the
fundamental rules of probability, with the use of mathematical notation. In the social
sciences, we use probability to model the randomly determined nature of various real-
world events, and even human behavior and beliefs. Randomness does not necessarily
imply complete unpredictability. Rather, our task is to identify systematic patterns
from noisy data.

6.1 Probability

We use probability as a measure of uncertainty. Probability is based on a set of three
simple axioms, from which a countless number of useful theorems have been derived.
In this section, we show how to define, interpret, and compute probability.

6.1.1 FREQUENTIST VERSUS BAYESIAN
In everyday life, we often hear statements such as “the probability of winning a

coin toss is 50%” and “the probability of Obama winning the 2008 US presidential
election is 80%.” What do we mean by “probability”? There are at least two different
interpretations. One interpretation, which is called the frequentist interpretation, states
that probability represents the limit of relative frequency, defined as the ratio between
the number of times the event occurs and the number of trials, in repeated trials
under the same conditions. For example, the above statement about coin tosses can be
interpreted as follows: if a coin toss is repeatedly conducted under the same conditions,
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Figure 6.1. Reverend Thomas Bayes (1701–1761).

the fraction of times a coin lands on heads approaches 0.5 as the number of coin
tosses increases. Here, the mathematical term, “limit,” represents the value to which a
sequence of relative frequencies converges as the number of (hypothetically) repeated
experiments approaches infinity.

The frequentist interpretation of probability faces several difficulties. First, it is un-
clear what we mean by “the same conditions.” In the case of coin flips, such conditions
may include initial angle and velocity as well as air pressure and temperature. However,
if all conditions are identical, then the laws of physics imply that a coin flip will always
yield the same outcome. Second, in practice, we can never conduct experiments like
coin flips under the exact same conditions infinitely many times. This means that
probability may be unable to describe the randomness of many events in the real
world. In fact, coin flips may be among the easiest experiments to repeat under nearly
identical conditions. Many other events covered in this book happen in dynamic social
environments that are constantly changing.

How should we think about the probability of Obama winning the 2008 US
presidential election from the frequentist perspective? Since the 2008 US presidential
election occurs only once, it is strange to consider a hypothetical scenario in which
this particular election occurs repeatedly under the same conditions. In addition, since
Obama either wins the election or not, the probability of his victory should be either
0 or 1. Here, what is random is the election forecast (due to sampling variability etc.)
not the actual election outcome.

An alternative framework is the Bayesian interpretation of probability, named after
an 18th century English mathematician and minister, Thomas Bayes (see figure 6.1).
According to this paradigm, probability is a measure of one’s subjective belief about
the likelihood of an event occurring. A probability of 0 means that an individual
thinks an event is impossible, whereas a probability of 1 implies that the individual



244 Chapter 6: Probability

thinks the event is sure to happen. Any probability value between 0 and 1 indicates
the degree to which one feels uncertain about the occurrence of the event. In contrast
to the frequentist perspective, the Bayesian framework makes it easy to interpret the
statement, “the probability of Obama winning the 2008 US presidential election is x%,”
because x simply reflects the speaker’s subjective belief about the likelihood of Obama’s
victory.

Critics of Bayesian interpretation argue that if scientists have identical sets of
empirical evidence, they should arrive at the same conclusion rather than reporting
different probabilities of the same event. Such subjectivity may hinder scientific
progress because under the Bayesian framework, probability simply becomes a tool
to describe one’s belief system. In contrast, Bayesians contend that human beings,
including scientists, are inherently subjective, so they should explicitly recognize the
role of their subjective beliefs in scientific research.

Regardless of the ongoing controversy about its interpretation, probability was
established as a mathematical theory by Soviet mathematician Andrey Kolmogorov
in the early 20th century. Since both frequentists and Bayesians use this mathematical
theory, the disagreement is about interpretation and is not mathematical.

There are two dominant ways to interpret probability. According to the frequen-
tist framework, probability represents the limit of the relative frequency with
which an event of interest occurs when the number of experiments repeatedly con-
ducted under the same conditions approaches infinity. The Bayesian framework,
in contrast, interprets probability as one’s subjective belief about the likelihood of
event occurrence.

6.1.2 DEFINITION AND AXIOMS
We define probability using the following three concepts: experiment, sample space,

and event.

The definition of probability requires the following concepts:

1. experiment: an action or a set of actions that produce stochastic events
of interest

2. sample space: a set of all possible outcomes of the experiment, typically
denoted by �

3. event: a subset of the sample space

We can briefly illustrate each concept using the aforementioned two examples.
Flipping a coin or holding an election would be the experiment, while the sample space
would be given by {lands on heads, lands on tails} or {Obama wins, McCain wins,
a third-party candidate wins}. The mathematical term set refers to a collection of
distinct objects. An event represents any subset of sample space, and hence it may
include multiple outcomes. In fact, the entire sample space that contains all outcomes
is also an event. Moreover, an event is said to occur if the set that defines the event
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includes an actual outcome of the experiment. In the election example, events include
{Obama wins, McCain wins}, which contains two outcomes and can be understood in
English as “either Obama or McCain wins.” Since Obama won the election, this event
did occur in 2008.

As another example, consider a voter’s decision in the 2008 US presidential
election as an experiment. The idea is that a voter’s decision can be modeled
as a stochastic, rather than deterministic, event. By considering all four possible
outcomes, we can define the sample space of this experiment as � = {abstain,
vote for Obama, vote for McCain, vote for a third-party candidate}. Within this
sample space, we may consider the occurrence of various events including
{vote for Obama, vote for McCain, vote for a third-party candidate} (i.e., “do not
abstain”) and {abstain, vote for McCain, vote for a third-party candidate} (i.e., “do not
vote for Obama”).

We now discuss how to compute probability, starting with the simplest case in
which all outcomes are equally likely to occur. In this case, the probability of event A
occurring, denoted by P (A), can be computed as the ratio of the number of elements
in the corresponding set A to that in the entire sample space �:

P (A) = number of elements in A
number of elements in �

. (6.1)

To illustrate this, consider an experiment of tossing a fair coin 3 times. In this
experiment, if we denote {lands on heads} and {lands on tails} as H and T , re-
spectively, then the sample space is equal to the set of 8 outcomes, � =
{HHH, HHT , HTH, HTT , THH, THT , TTH, TTT}. We can then compute the
probability of, for example, landing on heads at least twice by counting the number
of elements in the relevant set, A = {HHH, HHT , HTH, THH}. In this case,
therefore, using the formula above we obtain P (A) = 4/8 = 0.5.

Having defined probability, we next consider its basic rules or axioms. Modern
probability theory rests on the following three simple axioms. Remarkably, from these
axioms, the entire theory of probability, including all the existing rules and theorems,
can be derived.

The probability axioms are given by the following three rules:

1. The probability of any event A is nonnegative:

P (A) ≥ 0.

3. The probability that one of the outcomes in the sample space occurs is 1:

P (�) = 1.

3. (Addition rule) If events A and B are mutually exclusive, then

P (A or B) = P (A) + P (B). (6.2)

The first two axioms together imply that probability ranges from 0 to 1. To under-
stand the last axiom, recall the previous example in which the 2008 US presidential
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(b) Not mutually exclusive events(a) Mutually exclusive events

Ω Ω

Figure 6.2. Venn Diagram. Two events, A and B , can be mutually exclusive, having two
disjoint sets of outcomes (left plot) or not mutually exclusive, sharing some outcomes
(right plot). The rectangular box represents the sample space �. Source: Adapted from
example by Uwe Ziegenhagen, http://texample.net.

election is considered as an experiment. “Mutually exclusive” in the last axiom means
that two events, A and B , do not share an outcome. As illustrated by the Venn diagram
(named after John Venn, an English philosopher) in figure 6.2a, mutually exclusive
events imply two disjoint sets, meaning that they do not share any element. Consider
two events: A = Obama wins and B = McCain wins. Clearly, these two events are mu-
tually exclusive in that both Obama and McCain cannot win at the same time. Hence,
we can apply the addition rule to conclude that P ({Obama wins} or {McCain wins}) =
P (Obama wins) + P (McCain wins).

Now, consider two events that are not mutually exclusive because they share
an outcome: A = Obama loses and B = McCain loses. In this case, the ad-
dition rule does not apply because both A and B contain the same outcome:
a third-party candidate wins. For events that are not mutually exclusive, we can apply
the following general addition rule.

For any given events A and B , the addition rule is given by

P (A or B) = P (A) + P (B) − P (A and B). (6.3)

Applying this to the current example, we have P ({Obama loses}or {McCain
loses}) = P (Obama loses) + P (McCain loses) − P ({Obama loses} and {McCain
loses}).
This result can be immediately seen from the Venn diagram shown in figure 6.2b.

In the diagram, we observe that the event, {A or B}, can be decomposed into three
mutually exclusive events, {A and B c} (white region), {B and Ac} (dark blue region),
and {A and B} (overlapped light blue region). The superscript c represents the
complement of a set, which consists of all elements in the sample space except those
in the set. For example, Ac represents the collection of all outcomes in the sample
space that do not belong to A. The notation {A and B c} translates to “all outcomes
of A that do not belong to B .” Since any outcome in the sample space belongs either to
A or Ac, in general, we have

P (Ac) = 1 − P (A). (6.4)

http://texample.net
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The equation directly follows from the probability axioms since events A and Ac are
mutually exclusive and together they constitute the entire sample space.

Using the third probability axiom, given in equation (6.2), we have

P (A or B) = P (A and B c) + P (B and Ac) + P (A and B). (6.5)

When A and B are mutually exclusive, P (A and B c) and P (B and Ac) reduce to P (A)
and P (B), respectively (see figure 6.2a). In addition, we have P (A and B) = 0 in this
mutually exclusive case.

Finally, notice that event A can be decomposed as two mutually exclusive events,
{A and B} (overlapped light blue region) and {A and B c} (nonoverlapped white
region). This is called the law of total probability.

For any given events A and B , the law of total probability is given by

P (A) = P (A and B) + P (A and B c). (6.6)

According to the law of total probability, we can write P (A and B c) = P (A) −
P (A and B) by subtracting P (A and B) from both sides of equation (6.6). Similarly,
the law of total probability can be applied to event B , yielding P (B and Ac) =
P (B)− P (A and B). Substituting these results into equation (6.5) and simplifying the
expression leads to the general addition rule given in equation (6.3). We emphasize
that this result is obtained by using the probability axioms alone. In addition, readers
are encouraged to confirm the results shown in equations (6.3)–(6.6) using the Venn
diagram of figure 6.2.

6.1.3 PERMUTATIONS
When each outcome is equally likely, in order to compute the probability of event A,

we need to count the number of elements in event A as well as the total number of
elements in the sample space � (see equation (6.1)). We introduce a useful counting
technique, called permutations. Permutations refer to the number of ways in which
objects can be arranged. For example, consider three unique objects A, B , andC . There
are 6 unique ways to arrange them: {ABC, ACB, BAC, BCA,CAB,CBA}.

How can we compute the number of permutations without enumerating every
arrangement, especially when the number of objects is large? It turns out that there
is an easy way to do this. Let’s consider the above example of arranging three objects,
A, B , and C . First, there are three ways to choose the first object: A, B , or C . Once
the first object is selected, there are two ways to choose the second object. Finally,
the third object remains, leaving us only one way to choose this last object. We can
conceptualize this process as a tree shown in figure 6.3, where the total number of
leaves equals the number of permutations. Thus, to compute the number of leaves,
we only need to sequentially multiply the number of branches at each level, i.e.,
3 × 2 × 1.
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Figure 6.3. A Tree Diagram for Permutations. There are 6 ways to arrange 3 unique
objects. Source: Adapted from example by Madit, http://texample.net.

Generalizing this idea, we can compute the number of permutations of k objects out
of a set of n unique objects, denoted by n Pk where k ≤ n, using the following formula.

The number of permutations when arranging k objects out of n unique objects is
given by

n Pk = n × (n − 1) × · · · × (n − k + 2) × (n − k + 1) = n!
(n − k)!

. (6.7)

In this equation, ! represents the factorial operator. When n is a nonnegative
integer, n! = n × (n − 1) × · · · × 2 × 1. Note that 0! is defined as 1.

In the previous example, n= 3 and k= 3. Therefore,

3P3 = 3!
0!

= 3 × 2 × 1
1

= 6.

As another example, compute the number of ways in which you can arrange 4 cards out
of 13 unique cards. This can be computed by setting n= 13 and k= 4 in equation (6.7):

13P4 = 13!
(13 − 4)!

= 13 × 12 × 11 × 10 = 17160.

The birthday problem is a well-known counterintuitive example of permutations.
The problem asks how many people one needs in order for the probability that at least
two people have the same birthday to exceed 0.5, assuming that each birthday is equally
likely. What is surprising about this problem is that the answer is only 23 people, which
is much lower than what most people guess. To solve this problem using permutations,
first notice the following relationship:

P (at least two people have the same birthday)
= 1 − P (nobody has the same birthday). (6.8)

http://texample.net
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This equality holds because the event {nobody has the same birthday} is the comple-
ment of the event {at least two people have the same birthday} (see equation (6.4)).
This means that we only need to compute the probability that nobody has the same
birthday.

Let k be the number of people. To compute the probability that nobody has the same
birthday, we count the number of ways in which k people can have different birthdays.
Since each birthday is assumed to be equally likely, we can use permutations to count
the number of ways in which k unique birthdays can be arranged out of 365 days.
This is given by 365Pk = 365!/(365 − k)!. Applying equation (6.1), we then divide this
number by the total number of elements in the sample space. The latter is equal to the
total number of ways to select k possibly nonunique birthdays out of 365 days. The first
person could have any of 365 days as his/her birthday, and so could any other person.
Hence, the denominator is equal to 365× 365× · · · × 365 = 365k . Therefore, we have

P (nobody has the same birthday)

= # of ways in which k unique birthdays can be arranged

# of ways in which k possibly nonunique birthdays can be arranged

= 365Pk
365k

= 365!
365k(365 − k)!

. (6.9)

Together with equation (6.8), the solution to the birthday problem is 1 − 365!/
{365k(365 − k)!}.

Computing equation (6.9) is not easy even for amoderate value of k because both the
denominator and numerator can take extremely large values. In such cases, it is often
convenient to use the natural logarithmic transformation (see section 3.4.1). For the
natural logarithm, e A = B implies A = log B . In addition, the basic rules of logarithms
we use here are

log AB = log A+ log B, log
A
B

= log A− log B, and log AB = B log A.

Applying these rules, we have

log P (nobody has the same birthday) = log 365! − k log 365 − log(365 − k)!.

After computing this probability on a logarithmic scale, we then take the exponential
transformation of it to obtain the desired probability. In R, we use the lfactorial()
function to compute the logarithm of a factorial instead of the factorial()
function, which computes a factorial without the logarithmic transformation. We now
create a new function called birthday, which computes the probability that at least
two people have the same birthday given k. The function is written so that it takes a
vector of k values. We plot the results.

birthday <- function(k) {

logdenom <- k * log(365) + lfactorial(365 - k) # log denominator

lognumer <- lfactorial(365) # log numerator

## P(at least two have the same bday) = 1 - P(nobody has the same bday)
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pr <- 1 - exp(lognumer - logdenom) # transform back

return(pr)

}

k <- 1:50

bday <- birthday(k) # call the function

names(bday) <- k # add labels

plot(k, bday, xlab = "Number of people", xlim = c(0, 50), ylim = c(0, 1),

ylab = "Probability that at least two\n people have the same birthday")

abline(h = 0.5) # horizontal 0.5 line

bday[20:25]

## 20 21 22 23 24 25

## 0.4114384 0.4436883 0.4756953 0.5072972 0.5383443 0.5686997
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We observe that when the number of people equals 23, the probability of at least two
people having the same birthday exceeds 0.5. When the number of people is more than
50, this probability is close to 1.

6.1.4 SAMPLING WITH AND WITHOUT REPLACEMENT
While we derived an exact analytical solution to the birthday problem above, we can

also produce an approximate solution using a Monte Carlo simulation method. The
name originates from the Monte Carlo Casino in Monaco, but we may also simply call
it a simulation method. The Monte Carlo simulation method refers to a general class
of stochastic (as opposed to deterministic) methods that can be used to approximately
solve analytical problems by randomly generating quantities of interest.
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For the birthday problem, we sample k possibly nonunique birthdays out of 365 days
and check whether or not the sampled k birthdays are all different. We use sampling
with replacement because for each of k draws, every one of 365 days is equally likely to
be sampled regardless of which dates were sampled before. In other words, the fact that
one person is born on a certain day of the year should not exclude someone else from
being born on the same day. After repeating this sampling procedure many times, we
compute the fraction of simulation trials where at least two birthdays are the same, and
this fraction serves as an estimate of the corresponding probability. This simulation
procedure is intuitive because it emulates the data-generating process, or the actual
process in which the data are generated, as described in the birthday problem.

In R, we can use the sample() function to implement sampling with or without
replacement by setting the replace argument to either TRUE or FALSE. While
unused in the birthday problem, sampling without replacement means that once an
element is sampled, it will not be available for subsequent draws. For example, in the
discussion of sample surveys in section 3.4.1, we introduced simple random sampling
(SRS) as a method to randomly choose a representative sample of respondents from a
population. SRS is an example of sampling without replacement because we typically
do not interview the same individual multiple times. For sampling with replacement,
the basic syntax is sample(x, size = k, replace = TRUE), where x is a
vector of elements to sample from, and size is the number of elements to choose.
In addition, we can feed a vector of probability weights into the prob argument if
unequal probabilities should be used to sample each element.

k <- 23 # number of people

sims <- 1000 # number of simulations

event <- 0 # counter

for (i in 1:sims) {

days <- sample(1:365, k, replace = TRUE)

days.unique <- unique(days) # unique birthdays

## if there are duplicates, the number of unique birthdays

## will be less than the number of birthdays, which is “k”

if (length(days.unique) < k) {

event <- event + 1

}

}

## fraction of trials where at least two bdays are the same

answer <- event / sims

answer

## [1] 0.509

While our simulation estimate is close to the analytical solution, which is 0.507, they
are not identical. This difference is called the Monte Carlo error, but is the inevitable
consequence of the simulation approach. The size of theMonte Carlo error depends on
the nature of the problem and it differs from one simulation to another. It is difficult
to eliminate such an error but it is possible to reduce it. To obtain a more accurate
estimate, we increase the number of simulations. In the above code, we set the number
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of simulations to 1000. Next, we run the same code with the number of simulations set
to one million and obtain an estimate of 0.508, which is closer to the true answer.

TheMonte Carlo simulationmethod refers to a general class of repeated random
sampling procedures used to approximately solve analytical problems. Commonly
used procedures include sampling with replacement, in which the same unit can
be repeatedly sampled, and sampling without replacement, in which each unit
can be sampled at most once.

6.1.5 COMBINATIONS
We introduce another useful counting method called combinations. Combinations

are similar to permutations, but the former ignores ordering while the latter does
not. That is, combinations are ways to choose k distinct elements out of n elements
without regard to their order. This means that when choosing 2 elements, two different
permutations, AB and B A, represent one identical combination. Since the order in
which the elements are arranged does not matter, the number of combinations is never
greater than the number of permutations. For example, if we choose 2 distinct elements
out of 3 elements, A, B , and C , the number of permutations is 3P2 = 6 (AB , B A, AC ,
C A, BC , C B), whereas the number of combinations is 3 (AB , AC , BC ).

In fact, to compute combinations, we first calculate permutations n Pk and then di-
vide by k!. This is because given k sampled elements, there are k! ways to arrange them
in a different order, and yet all these arrangements are counted as a single combination.
In the above example, for every set of two sampled elements (e.g., A and B), we have
2!(= 2× 1 = 2) ways of arranging them (i.e., AB and B A) but these two permutations
count as one combination. Here, we obtain the number of combinations through the
division of 3P2 by 2!. In general, the formula for combinations is given as follows.

The number of combinationswhen choosing k distinct elements from n elements
is denoted by either nCk or

(n
k
)
and is computed as

nCk =
(
n
k

)
= n Pk

k!
= n!

k!(n − k)!
. (6.10)

Suppose that we are creating a committee of 5 out of 20 people (10 men and 10
women). Assume that each person is equally likely to be assigned to the committee.
What is the probability that at least 2 women are on the committee? To compute this
probability, we first note the following equality:

P (at least 2 women are on the committee)
= 1 − P (no woman is on the committee)

− P (exactly 1 woman is on the committee).

To compute the two probabilities on the right-hand side of this equation, we count
the total number of ways we can assign 5 people to the committee out of 20 people
regardless of their gender. This is given by 20C5 = 15,504. Similarly, the number of
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To the Members of the California State Assembly: 

I am returning Assembly Bill 1176 without my signature.

For some time now I have lamented the fact that major issues are overlooked while many 
unnecessary bills come to me for consideration.  Water reform, prison reform, and health 
care are major issues my Administration has brought to the table, but the Legislature just 
kicks the can down the alley. 

Yet another legislative year has come and gone with out the major reforms Californians 
overwhelmingly deserve.  In light of this, and after careful consideration, I believe it is 
unnecessary to sign this measure at this time. 

Sincerely,  

Arnold Schwarzenegger 

Figure 6.4. California Governor Arnold Schwarzenegger’s Veto Message in 2009.

ways in which we can have no woman on the committee is given by 10C0 × 10C5 = 252
because there is 10C0 way to choose no woman and there are 10C5 ways to choose 5 out
of 10 men. Thus, the probability of having no woman is 0.016. The number of ways in
which we can have exactly 1 woman on the committee is 10C1 × 10C4 = 2100, giving
a probability of 0.135. Altogether, the probability of having at least 2 women on the
committee equals 0.84 = 1 − 0.016 − 0.135.

As a more complex example of combinations, we discuss an incident that occurred
in 2009 when California Governor Arnold Schwarzenegger wrote a message to the
state assembly regarding his veto of Assembly Bill 1176.1 This message is displayed
in figure 6.4. When the message was released, many observed that the first letters of
each line in the main text, starting with “F” and ending with “u,” constitute a sentence
of profanity. Asked whether this was intentional, Schwarzenegger’s spokesman replied,
“My goodness. What a coincidence. I suppose when you do so many vetoes, something
like this is bound to happen.” Below, we consider the probability of this acrostic
happening by chance.

For the sake of simplicity, suppose that the Governor gave his veto message to his
secretary who then typed it in her computer but hit the return key at random. That is,
the 85 words (“For” to “time”) were divided by (random) line breaks into 7 lines, each
with at least one word. We further assume that there are no broken words, every way
of breaking the lines was equally likely, and the total number of lines is fixed at seven.
Under this scenario, what is the probability of the coincidence happening?

To compute this probability using equation (6.1), we first consider the number
of ways in which the 85 words can be divided into 7 lines. Note that to end up
with 7 lines, 6 line breaks must be inserted. A line break may be inserted before the
second word, before the third word, . . . , or before the 85th word. There are thus 84
places into which 6 line breaks must be inserted. How many ways can we insert line
breaks into 6 out of these 84 places? To compute this number, we use combinations
rather than permutations because the order in which 6 line breaks are inserted does
not matter. (Of course, the words in the acrostic must be ordered in a particular
way to generate the profanity.) Therefore, the application of combinations leads to
84C6 = 84!/(6!78!) equally likely partitions. To compute combinations in R, we use the

1 This section is based on Philip B. Stark (2009) “Null and vetoed: Chance coincidence?” Chance, vol. 23,
no. 4, pp. 43–46.
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choose() function. When the number is large, we may use the lchoose() function
so that combinations are calculated on the logarithmic scale.

choose(84, 6)

## [1] 406481544

Therefore, there are more than 400 million ways to insert 6 line breaks. However,
there are only 12 ways to produce this particular acrostic. The break to produce “u” at
the beginning of the second line can be in only one place (“unnecessary”). The break
to produce “c” at the beginning of the third line can happen in any of 3 places (“come,”
“consideration,” “care”). The break for the “k” can be in only one place (“kicks”). The
break for the “y” can be in any of two places (“Yet,” “year”). The break for the “o” can
be in any of two places (“overwhelmingly,” “of”). The break for the “u” can be in only
one place (“unnecessary”). These scenarios lead to 12 = 1× 3× 1× 2× 2× 1. Hence,
the probability that this randomization scheme would produce the acrostic is 12/84C6,
or about one in 34 million. The analysis suggests that according to this probabilistic
model, the “coincidence” is a highly unlikely event.

6.2 Conditional Probability

We next introduce conditional probability, which concerns how the probability
of an event changes after we observe other events. Conditional probability follows
the rules of probability described in section 6.1. The difference is that conditional
probability enables us to take into account observed evidence.

6.2.1 CONDITIONAL, MARGINAL, AND JOINT PROBABILITIES
We begin by defining the conditional probability of event A occurring, given

the information that event B has occurred. This conditional probability, denoted as
P (A | B), has the following definition.

The conditional probability of event A occurring given that event B occurred is
defined as

P (A | B) = P (A and B)
P (B)

. (6.11)

In this equation, P (A and B) is the joint probability of both events occurring,
whereas P (B) is the marginal probability of event B . By rearranging, we obtain
themultiplication rule

P (A and B) = P (A | B)P (B) = P (B | A)P (A). (6.12)

Using this rule, we can derive an alternative form of the law of total probability
introduced in equation (6.6):

P (A) = P (A | B)P (B) + P (A | Bc)P (B c). (6.13)
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To see the importance of conditioning, consider two couples who are both expecting
twins. One couple had an ultrasound exam, but the technician was able to determine
only that one of the twowas a boy. The other couple did not find out the genders of their
twins until the delivery when they saw the first baby was a boy. What is the probability
that both babies are boys? Is this probability different between the two couples? We
begin by noting that there are four outcomes in the sample space. Denoting the baby
gender by “G” for girl and “B” for boy, respectively, we can represent the sample space
by � = {GG,GB, BG, BB}. For example, GB means that the elder twin is a girl and
the younger one is a boy.

Then, for the first couple, the probability of interest is

P (BB | at least one is a boy) = P (BB and {at least one is a boy})
P (at least one is a boy)

= P (BB and {BB or BG or GB})
P (BB or BG or GB)

= P (BB)
P (BB or BG or GB)

= 1/4
3/4

= 1
3
.

The third equality follows from the fact that event BB is a subset of event
{at least one is a boy}, i.e., BB and {BB or BG or GB} = BB .

In contrast, for the second couple, we have

P (BB | elder twin is a boy) = P (BB and {the elder twin is a boy})
P (elder twin is a boy)

= P (BB and {BB or BG})
P (BB or BG )

= P (BB)
P (BB or BG )

= 1/4
1/2

= 1
2
.

Therefore, this example illustrates that the information upon which we condi-
tion matters. Knowing that the first baby is a boy, as opposed to knowing
that at least one is a boy, gives a different conditional probability of the same
event.

Probability and conditional probability can also be used to describe the character-
istics of a population. For example, if 10% of a population of voters are black, then
we may write P (black) = 0.1. We can interpret this probability as stating that if we
randomly sample a voter from this population there is a 10% chance this voter is black.
Similarly, P (black | hispanic or black) represents the population proportion of blacks
among minority (i.e., black and Hispanic) voters.

As an illustration, we will use a random sample of 10,000 registered voters from
Florida contained in the CSV file FLVoters.csv. Table 6.1 shows the names and
descriptions of variables in this sample list of registered voters. To begin, we load
the data and remove those voters who contain a missing value using the na.omit()
function.
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Table 6.1. Florida Registered Voter List Sample.

Variable Description

surname surname
county county ID of the voter’s residence
VTD voting district ID of the voter’s residence
age age
gender gender: m = male and f = female
race self-reported race

FLVoters <- read.csv("FLVoters.csv")

dim(FLVoters) # before removal of missing data

## [1] 10000 6

FLVoters <- na.omit(FLVoters)

dim(FLVoters) # after removal

## [1] 9113 6

For the sake of illustration, we will treat this sample of 9113 voters as a population
of interest. To compute the marginal probability for each racial category, we can use
the table() and prop.table() functions (see section 2.5.2) and calculate the
proportion of voters who belong to each racial group in this population.

margin.race <- prop.table(table(FLVoters$race))

margin.race

##

## asian black hispanic native other

## 0.019203336 0.131021617 0.130802151 0.003182267 0.034017338

## white

## 0.681773291

The result shows, for example, that P (black) = 0.13 and P (white) = 0.68. Similarly,
we can obtain the marginal probabilities of gender as follows.

margin.gender <- prop.table(table(FLVoters$gender))

margin.gender

##

## f m

## 0.5358279 0.4641721
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Therefore, we have P (female) = 0.54 and P (male) = 0.46. Next, to compute the
conditional probability of race given gender, we can look at the proportion of each racial
group among female voters and among male voters, separately.

prop.table(table(FLVoters$race[FLVoters$gender == "f"]))

##

## asian black hispanic native other

## 0.016997747 0.138849068 0.136391563 0.003481466 0.032357157

## white

## 0.671922998

The result suggests, for example, P (black | female) = 0.14 and P (white | female) =
0.67. Lastly, the joint probability of race and gender can be computed by calculating the
proportion of voters who belong to specific racial and gender groups.

joint.p <- prop.table(table(race = FLVoters$race, gender = FLVoters$gender))

joint.p

## gender

## race f m

## asian 0.009107868 0.010095468

## black 0.074399210 0.056622408

## hispanic 0.073082410 0.057719741

## native 0.001865467 0.001316800

## other 0.017337869 0.016679469

## white 0.360035115 0.321738176

This joint probability table gives, for example, P (black and female) = 0.07 and
P (white and male) = 0.32. From this joint probability, we can compute the marginal
and conditional probability. First, to obtain the marginal probability, we apply the
law of total probability given in equation (6.6). For example, we can compute the
probability of being a black voter by

P (black) = P (black and female) + P (black and male).

Thus, summing over columns for each row results in the marginal probability of race.
This operation yields results identical to those obtained above.

rowSums(joint.p)

## asian black hispanic native other

## 0.019203336 0.131021617 0.130802151 0.003182267 0.034017338

## white

## 0.681773291
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Similarly, we can obtain the marginal probability of gender from the joint probabil-
ity table by summing over racial categories. Since we have a total of six racial categories,
we will extend the law of total probability given in equation (6.6) to

P (A) =
N∑

i=1

P (A and Bi ), (6.14)

where B1, . . . , BN is a set of mutually exclusive events which together cover the entire
sample space. In the current setting, for example, since racial categories are mutually
exclusive, we have

P (female) = P (female and asian) + P (female and black)

+ P (female and hispanic) + P (female and native)

+ P (female and other) + P (female and white).

Therefore, the marginal probability of gender is obtained by summing over rows for
each column of the joint probability table.

colSums(joint.p)

## f m

## 0.5358279 0.4641721

Finally, the conditional probability can be obtained as the ratio of joint probability to
the marginal probability (see equation (6.11)). For example, the conditional probability
of being black among female voters is calculated as

P (black | female) = P (black and female)
P (female)

≈ 0.074
0.536

≈ 0.139,

which, as expected, is equal to what we computed earlier.
The results of this example are summarized in table 6.2. From the joint probability,

both marginal and conditional probabilities can be obtained. To compute marginal
probability, we sum over either rows or columns. Oncemarginal probability is obtained
in this way, we can divide joint probability by marginal probability in order to calculate
the desired conditional probability.

We can extend the definition of conditional probability to settings with more
than two types of events. For events A, B , and C , the joint probability is defined as
P (A and B and C ), whereas there are three marginal probabilities P (A), P (B), and
P (C ). In this case, there are two types of conditional probabilities: the joint probability
of two events conditional on the remaining event (e.g., P (A and B | C )) and the
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Table 6.2. An Example of a Joint Probability Table.

Gender
Racial groups Female Male Marginal prob.

Asian 0.009 0.010 0.019
Black 0.074 0.057 0.131
Hispanic 0.073 0.058 0.131
Native 0.002 0.001 0.003
White 0.360 0.322 0.682

Marginal prob. 0.536 0.464 1

Note: The table is based on Florida voter registration data. The marginal
probability of gender (far right column) and that of race (bottom row) can
be obtained by summing the joint probabilities over columns and over rows,
respectively.

conditional probability of one event given the other two (e.g., P (A | B and C )). These
conditional probabilities can be defined analogously to the two-event case as

P (A and B | C ) = P (A and B and C )
P (C )

, (6.15)

P (A | B and C ) = P (A and B and C )
P (B and C )

= P (A and B | C )
P (B | C )

. (6.16)

The second equality in equation (6.16) follows from the equality P (A and B and C ) =
P (A and B | C )P (C ), which is obtained by rearranging the terms in equation (6.15).

To illustrate the above conditional probabilities, we create a new age.group
variable indicating four age groups: 20 and below, 21–40, 41–60, and above 60.

FLVoters$age.group <- NA # initialize a variable

FLVoters$age.group[FLVoters$age <= 20] <- 1

FLVoters$age.group[FLVoters$age > 20 & FLVoters$age <= 40] <- 2

FLVoters$age.group[FLVoters$age > 40 & FLVoters$age <= 60] <- 3

FLVoters$age.group[FLVoters$age > 60] <- 4

The joint probability of age group, race, and gender can be calculated as a three-way
table. Below, this three-way table is displayed as two separate two-way tables: one two-
way (race and age group) table for female voters and the other two-way table for male
voters.

joint3 <-

prop.table(table(race = FLVoters$race, age.group = FLVoters$age.group,

gender = FLVoters$gender))
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joint3

## , , gender = f

##

## age.group

## race 1 2 3

## asian 0.0001097333 0.0026336004 0.0041698672

## black 0.0016460002 0.0280917371 0.0257873368

## hispanic 0.0015362669 0.0260068035 0.0273236036

## native 0.0001097333 0.0004389334 0.0006584001

## other 0.0003292000 0.0062548008 0.0058158674

## white 0.0059256008 0.0796664106 0.1260836168

## age.group

## race 4

## asian 0.0021946670

## black 0.0188741358

## hispanic 0.0182157358

## native 0.0006584001

## other 0.0049380007

## white 0.1483594864

##

## , , gender = m

##

## age.group

## race 1 2 3

## asian 0.0002194667 0.0028530670 0.0051574674

## black 0.0016460002 0.0228245364 0.0189838692

## hispanic 0.0016460002 0.0197520026 0.0221661363

## native 0.0000000000 0.0004389334 0.0003292000

## other 0.0004389334 0.0069132009 0.0055964007

## white 0.0040601339 0.0750576100 0.1184022825

## age.group

## race 4

## asian 0.0018654669

## black 0.0131680018

## hispanic 0.0141556019

## native 0.0005486667

## other 0.0037309338

## white 0.1242181499

For example, the proportion of black female voters who are above 60 or
P (black and above 60 and female) is equal to 0.019. Suppose that wewish to obtain the
conditional probability of being black and female given that a voter is above 60 years old
or P (black and female | above 60). Using equation (6.15), we can compute this condi-
tional probability by dividing the joint probability by the marginal probability of being
above 60 or P (above 60). To extract a specific joint probability from the above three-
way table, we specify the corresponding value for each demographic characteristic.
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## marginal probabilities for age groups

margin.age <- prop.table(table(FLVoters$age.group))

margin.age

##

## 1 2 3 4

## 0.01766707 0.27093164 0.36047405 0.35092725

## P(black and female | above 60)

joint3["black", 4, "f"] / margin.age[4]

## 4

## 0.05378361

According to equation (6.16), the conditional probability of being black given that a
voter is female and above 60 years old or P (black | female and above 60) can be com-
puted by dividing the three-way joint probability P (black and above 60 and female)
by the two-way joint probability P (above 60 and female). To obtain this two-way joint
probability, we can create a two-way joint probability table for age group and gender.

## two-way joint probability table for age group and gender

joint2 <- prop.table(table(age.group = FLVoters$age.group,

gender = FLVoters$gender))

joint2

## gender

## age.group f m

## 1 0.009656535 0.008010534

## 2 0.143092286 0.127839350

## 3 0.189838692 0.170635356

## 4 0.193240426 0.157686821

joint2[4, "f"] # P(above 60 and female)

## [1] 0.1932404

## P(black | female and above 60)

joint3["black", 4, "f"] / joint2[4, "f"]

## [1] 0.09767178

6.2.2 INDEPENDENCE
Having defined conditional probability, we can now formally discuss the concept of

independence. Intuitively, the independence of two events implies that the knowledge
of one event does not give us any additional information about the occurrence of the
other event. That is, if events A and B are independent of each other, the conditional
probability of A given B does not differ from the marginal probability of A. Similarly,
the conditional probability of B given A does not depend on A:

P (A | B) = P (A) and P (B | A) = P (B). (6.17)
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Together with equation (6.12), this equality implies the following formal definition of
independence between events A and B .

Events A and B are independent if and only if the joint probability is equal to the
product of the marginal probabilities:

P (A and B) = P (A)P (B). (6.18)

We investigate whether race and gender are independent of each other in the
sample of Florida registered voters analyzed earlier. Although we do not expect
this relationship to be exactly independent, we examine whether the proportion of
female voters, for example, is greater than expected in some racial groups. Note
that if independence holds, we should have, for example, P (black and female) =
P (black)P (female), P (white and male) = P (white)P (male), and so on. We compare
the products of marginal probabilities for race and female with their joint probabilities
using a scatter plot. We use the c() function, which combines its inputs into a vector,
to coerce a table format into a vector so that its elements can be used in the plot()
function.

plot(c(margin.race * margin.gender["f"]), # product of marginal probs.

c(joint.p[, "f"]), # joint probabilities

xlim = c(0, 0.4), ylim = c(0, 0.4),

xlab = "P(race) * P(female)", ylab = "P(race and female)")

abline(0, 1) # 45-degree line
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The scatter plot shows that the points fall neatly along the 45-degree line, implying
that P (race)P (female) (horizontal axis) and P (race and female) (vertical axis) are
approximately equal. This means that race and gender are approximately independent
in this sample of registered voters. That is, the knowledge of a voter’s gender does not
help us predict her race. Similarly, one’s race does not predict gender either.

The notion of independence extends to situations with more than two events. For
example, if we have three events A, B , and C , the joint independence among these
events implies that the joint probability can be written as the product of marginal
probabilities:

P (A and B and C ) = P (A)P (B)P (C ). (6.19)

Furthermore, we can define the independence between two events conditional on
another event. The conditional independence of events A and B given event C implies
that the joint probability of A and B given C is equal to the product of two conditional
probabilities:

P (A and B | C ) = P (A | C )P (B | C ). (6.20)

Joint independence given in equation (6.19) implies pairwise independence given in
equation (6.18). This result can be obtained by applying the law of total probability:

P (A and B) = P (A and B and C ) + P (A and B and C c)
= P (A)P (B)P (C ) + P (A)P (B)P (C c)
= P (A)P (B)

(
P (C ) + P (C c)

) = P (A)P (B).

In addition, joint independence implies conditional independence, defined in
equation (6.20), but the converse is not necessarily true. This result is based on the
definition of conditional probability given in equation (6.15):

P (A and B | C ) = P (A and B and C )
P (C )

= P (A)P (B)P (C )
P (C )

= P (A | C )P (B | C ).

The last equality follows from the fact that joint independence implies pairwise
independence (and hence equation (6.17) holds for A and C as well as B and C ).

To examine joint independence among our sample of registered Florida voters,
we compare the elements of the three-way proportion table joint3 with the cor-
responding product of marginal probabilities, margin.race, margin.age, and
margin.gender. As an illustration, we set the age group to the above 60 category and
examine female voters. We also examine conditional independence between race
and gender, given age. For this, we again set the age and gender groups to the above
60 and female categories, respectively. The results show that both joint (left-hand
plot) and conditional (right-hand plot) independence relationships approximately
hold, despite small deviations.
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## joint independence

plot(c(joint3[, 4, "f"]), # joint probability

margin.race * margin.age[4] * margin.gender["f"], # product of marginals

xlim = c(0, 0.3), ylim = c(0, 0.3), main = "Joint independence",

xlab = "P(race and above 60 and female)",

ylab = "P(race) * P(above 60) * P(female)")

abline(0, 1)

## conditional independence given female

plot(c(joint3[, 4, "f"]) / margin.gender["f"], # joint prob. given female

## product of marginals

(joint.p[, "f"] / margin.gender["f"]) *

(joint2[4, "f"] / margin.gender["f"]),

xlim = c(0, 0.3), ylim = c(0, 0.3), main = "Marginal independence",

xlab = "P(race and above 60 | female)",

ylab = "P(race | female) * P(above 60 | female)")

abline(0, 1)
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Finally, the well-known Monty Hall problem illustrates how tricky conditional
probability and independence can be. The problem goes as follows. You are on a
game show and must choose one of three doors, where one conceals a new car and
two conceal old goats. After you randomly choose one door, the host of the game
show, Monty, opens a different door, which does not conceal a car. Then, Monty
asks you if you would like to switch to the (unopened) third door. You will win
the new car if it is behind the door of your final choice. Should you switch, or stay
with your original choice? Does switching make a difference? Most people think
switching makes no difference because after Monty reveals one door with a goat,
the two remaining doors have a goat or a car behind them. Therefore, the chance of
winning a car is 50%. However, it turns out that this seemingly sensible reasoning is
incorrect.
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Let’s think about this problem carefully. Consider the strategy of not switching. In
this case, your initial choice determines the outcome regardless of what Monty does.
Therefore, the probability of winning the car is 1/3. Now, consider the strategy of
switching. There are two scenarios. First, suppose that you initially choose a door with
the car. The probability of this event is 1/3. Swapping the door in this scenario is a
bad choice because you will not win the car. Next, suppose that the door you selected
first has a goat. The probability of your initially choosing a door with a goat is 2/3.
Then, since Monty opens another door with a goat, the remaining door to which you
will switch contains a car. Hence, under this scenario, you will always win the car.
Therefore, switching gives you a probability of winning the car that is twice as high as
not switching.

We formalize this logic by applying the rules of probability covered so far. To
compute the probability of winning a car given that you switch, we first apply the law
of total probability in equation (6.13):

P (car) = P (car | car first)P (car first) + P (car | goat first)P (goat first)

= P (goat first) = 2
3
.

To see why the second equality holds, notice that if you initially select the door with
a car then switching makes you lose the car, i.e., P (car | car first) = 0. In contrast,
if you first pick a door with a goat, then you have a 100% chance of winning a car by
switching, i.e., P (car | goat first) = 1.

This rather counterintuitive problem can also be solved with Monte Carlo sim-
ulations. For emulating random choice in R, we use the sample() function. We
set the size argument to 1 in order to randomly choose one element from a
vector.

sims <- 1000

doors <- c("goat", "goat", "car") # order does not matter

result.switch <- result.noswitch <- rep(NA, sims)

for (i in 1:sims) {

## randomly choose the initial door

first <- sample(1:3, size = 1)

result.noswitch[i] <- doors[first]

remain <- doors[-first] # remaining two doors

## Monty chooses one door with a goat

monty <- sample((1:2)[remain == "goat"], size = 1)

result.switch[i] <- remain[-monty]

}

mean(result.noswitch == "car")

## [1] 0.338

mean(result.switch == "car")

## [1] 0.662
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6.2.3 BAYES’ RULE
Wediscussed different interpretations of probability at the beginning of this chapter.

One interpretation, proposed by Reverend Thomas Bayes, was that probability mea-
sures one’s subjective belief in an event’s occurrence. From this Bayesian perspective, it
is natural to ask the question of how we should update our beliefs after observing some
data. Bayes’ rule shows how updating beliefs can be done in a mathematically coherent
manner.

Bayes’ rule is given by

P (A | B) = P (B | A)P (A)
P (B)

= P (B | A)P (A)
P (B | A)P (A) + P (B | Ac)P (Ac)

. (6.21)

In this equation, P (A) is called the prior probability and reflects one’s initial
belief about the likelihood of event A occurring. After observing the data,
represented as event B , we update our belief and obtain P (A | B), which is called
the posterior probability.

Regardless of whether we interpret probability as subjective belief, Bayes’ rule
shows mathematically how the knowledge of P (A) (prior probability), P (B | A), and
P (B | Ac) yields that of P (A | B) (posterior probability). Bayes’ rule is simply the result
of rewriting the definition of conditional probability given in equation (6.11) using the
law of total probability shown in equation (6.13):

P (A | B) = P (A and B)
P (B)

= P (B | A)P (A)
P (B)

.

A well-known application of Bayes’ rule is the interpretation of medical diagnostic
tests, which can have false positives and false negatives (defined in section 4.1.3).
Consider the following first-trimester screening test problem. A 35-year-old pregnant
woman is told that 1 in 378 women of her age will have a baby with Down syndrome
(DS). A first-trimester ultrasound screening procedure indicates that she is in a high-
risk category. Of 100 cases of DS, 86 mothers will receive a high-risk result and 14
cases of DS will be missed. Also, there is a 1 in 20 chance for a normal pregnancy
to be diagnosed as high risk. Given the result of the screening procedure, what is the
probability that her baby has DS? What would the probability be if the result had been
negative?

To solve this problem, we first specify the prior probability. Without any testing,
the probability that a baby has DS, P (DS), is equal to 1/378 or approximately 0.003.
The ultrasound screening procedure gives a high-risk result 86% of times when a baby
actually has DS. This is called the true positive rate of the test and can be expressed
as P (HR | DS) = 0.86, where HR denotes a high-risk result. However, the screening
procedure also produces a false positive rate of 5%, which can be formally written as
P (HR | not DS) = 0.05. Using this information, we can apply Bayes’ rule to obtain the
posterior probability that the baby has DS, given that the woman received a high-risk
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result, or the positive predictive value of the test:

P (DS | HR) = P (HR | DS)P (DS)
P (HR | DS)P (DS) + P (HR | not DS)P (not DS)

= 0.86 × 1
378

0.86 × 1
378 + 0.05 × 377

378
≈ 0.04.

Similarly, if the woman received a normal pregnancy result, the posterior
probability becomes

P (DS | not HR) = P (not HR | DS)P (DS)
P (not HR | DS)P (DS) + P (not HR | not DS)P (not DS)

= 0.14 × 1
378

0.14 × 1
378 + 0.95 × 377

378
≈ 0.0004.

We see that even when the woman receives a high-risk result, the posterior probability
of having a baby with DS is small. This is because DS is a relatively rare disease, as
reflected by a small prior probability. As expected, if the woman receives a normal
pregnancy result, then the posterior probability becomes even smaller than the prior
probability.

We can use Bayes’ rule to solve the Monty Hall problem introduced in section 6.2.2.
Let A represent the event that the first door has a car behind it. Define B andC similarly
for the second and third doors, respectively. Since each door is equally likely to have a
car behind it, the prior probabilities are P (A) = P (B) = P (C ) = 1/3. Suppose that
we choose the first door and let MC represent the event that Monty opens the third
door. We want to know whether switching to the second door increases the chance of
winning the car, i.e., P (B | MC) > P (A | MC). We apply Bayes’ rule after noting
that P (MC | A) = 1/2 (Monty chooses between the second and third door with equal
probability), P (MC | B) = 1 (Monty has no option but to open the third door, which
has a goat), and P (MC | C ) = 0 (Monty cannot open the third door, which has a car):

P (A | MC) = P (MC | A)P (A)
P (MC | A)P (A) + P (MC | B)P (B) + P (MC | C )P (C )

=
1
2 × 1

3
1
2 × 1

3 + 1 × 1
3 + 0 × 1

3
= 1

3
,

P (B | MC) = P (MC | B)P (B)
P (MC | A)P (A) + P (MC | B)P (B) + P (MC | C )P (C )

= 1 × 1
3

1
2 × 1

3 + 1 × 1
3 + 0 × 1

3
= 2

3
.

Thus, switching doors will give a probability of winning a car that is twice as great as
staying with the initial choice.
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6.2.4 PREDICTING RACE USING SURNAME AND RESIDENCE LOCATION
This section contains an advanced application of conditional probability and Bayes’

rule in the social sciences. Readers may skip this section without affecting their ability
to understand the materials in the remainder of the book.

It is often of interest to infer certain unknown attributes of individuals from their
known characteristics. We consider the problem of predicting individual race using
surname and residence location.2 Accurate prediction of individual race is useful, for
example, when studying turnout rates among racial groups.

The US Census Bureau releases a list of common surnames with their frequency.
For example, the most common surname was “Smith” with 2,376,206 occurrences,
followed by “Johnson” and “Williams” with 1,857,160 and 1,534,042, respectively. This
data set is quite comprehensive, including a total of more than 150,000 surnames that
occurred at least 100 times. In addition, the census provides the relative frequen-
cies of individual race within each surname, using a six-category self-reported race
measure: non-Hispanic white, non-Hispanic black, non-Hispanic Asian and Pacific
Islander, Hispanic origin, non-Hispanic American Indian and Alaskan Native, and
non-Hispanic of two or more races. We will combine the last two categories into a
single category of non-Hispanic others, so that we have five categories in total. The
aggregate information, which can be written as P (race | surname), enables us to
predict race given an individual’s surname.

Note that P (race), P (race | surname), and P (race and surname) are examples
of general ways to represent the marginal, conditional, and joint probabilities, re-
spectively. For example, P (race) represents a collection of marginal probabilities,
i.e., P (white), P (black), P (asian), P (hispanic), and P (others). Similarly, P (race |
surname) can be evaluated for any given racial group and surname, for example,
P (black | Smith). To illustrate the convenience of this general notation, we apply the
law of total probability in equation (6.14) to the joint probability of race and surname:

P (surname) =
∑

race

P (race and surname),

where the summation is taken over all racial categories (i.e., white, black, asian,
hispanic, and others. In terms of the notation used in equation (6.14), A represents
any given surname while Bi is a racial category. This equality applies to any surname
of interest, and the summation is taken over all five racial categories.

This census name list is contained in the CSV data file names.csv. Table 6.3 lists
the names and descriptions of variables in this census surname list data set.3

2 This section is in part based on Kosuke Imai and Kabir Khanna (2016) “Improving ecological inference
by predicting individual ethnicity from voter registration records.” Political Analysis, vol. 24, no. 2 (Spring),
pp. 263–272.

3 To protect anonymity, the Census Bureau does not reveal small race percentages for given surnames. For
the sake of simplicity, we impute these missing values by assuming that residual values will be equally allocated to
the racial categories with missing values. That is, for each last name, we subtract the sum of the percentages of all
races without missing values from 100% and divide the remaining percentage equally among those races that do
have missing values.
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Table 6.3. US Census Bureau Surname List Data.

Variable Description
surname surname
count number of individuals with a specific surname
pctwhite percentage of non-Hispanic whites among those who

have a specific surname
pctblack percentage of non-Hispanic blacks among those who

have a specific surname
pctapi percentage of non-Hispanic Asians and Pacific Islanders

among those who have a specific surname
pcthispanic percentage of Hispanic origin among those who have a

specific surname
pctothers percentage of the other racial groups among those who

have a specific surname

cnames <- read.csv("names.csv")

dim(cnames)

## [1] 151671 7

The total number of surnames contained in this data set is 151,671. For these
surnames, the data set gives the probability of belonging to a particular racial group
given a voter’s surname, i.e., P (race | surname). We begin by using this conditional
probability to classify the race of individual voters. To validate the accuracy of our
prediction of individual race, we use the sample of 10,000 registered voters from Florida
analyzed earlier (see table 6.1). In some Southern states including Florida, voters are
asked to self-report their race when registering. This makes the Florida data an ideal
validation data set. If the accuracy of a prediction method is empirically validated in
Florida, we may use the method to predict individual race in other states where such
information is not available.

For matching names between the voter file and census name data, we use the
match() function. This function takes the syntax of match(x, y) and returns a
vector of indices of vector y’s correspondence to each element of vector x. The function
returns NA if there is no match found in y for an element of x. Here is a simple example
illustrating the use of the match() function.

x <- c("blue", "red", "yellow")

y <- c("orange", "blue")

## match x with y

match(x, y) # “blue” appears in the 2nd element of y

## [1] 2 NA NA

## match y with x
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match(y, x) # “blue” appears in the first element of x

## [1] NA 1

Going back to the problem of predicting individual racial groups, we remove voters
whose surnames do not appear in the census surname list. To do so, we utilize the fact
that the syntax match(x, y) returns NA if the corresponding element of x is not
matched with any element of y.

FLVoters <- FLVoters[!is.na(match(FLVoters$surname, cnames$surname)), ]

dim(FLVoters)

## [1] 8022 7

The syntax !is.na() represents “not NA,” where ! indicates negation, so that only
the matched elements are retained. Thus, we focus on the resulting 80% of the original
sample. We first compute the proportion of voters whose race is correctly classified in
each racial category. Race is considered correctly classified if the racial category with
the greatest conditional probability P (race | surname) is identical to the self-reported
race. These represent true positives of classification (see table 4.3).

We calculate the true positive rate for each racial group, which represents, for
example, the proportion of white voters who are correctly predicted as white. To
compute this, we first subset white voters from the Florida voter file and then
match the surname of each voter with the same surname in the census surname
data.

whites <- subset(FLVoters, subset = (race == "white"))

w.indx <- match(whites$surname, cnames$surname)

head(w.indx)

## [1] 8610 237 4131 2244 27852 3495

The outputted row index w.indx contains, for each observation in the whites
data frame, the number of the row with the same surname in the cnames data frame.
For example, the second observation in the whites data frame has the surname
Lynch. This surname appears in the 237th row of the cnames data set. Accordingly,
the second value in w.indx is 237. More specifically, for each surname belonging
to a white voter in Florida, we use apply(cnames[w.indx, vars], 1, max)
to compare the predicted probabilities across the five racial categories in the vector
vars, and extract the highest predicted probability.We then check whether the highest
predicted probability for that voter is the same as the predicted probability of their
being white. If these two numbers are identical, the classification is correct. Finally, we
compute the mean of the resulting binary vector to obtain the proportion of correct
classifications, the true positive rate.
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## relevant variables

vars <- c("pctwhite", "pctblack", "pctapi", "pcthispanic", "pctothers")

mean(apply(cnames[w.indx, vars], 1, max) == cnames$pctwhite[w.indx])

## [1] 0.950218

The result shows that 95% of white voters are correctly predicted as whites. We
repeat the same analysis for black, Hispanic, and Asian voters.

## black

blacks <- subset(FLVoters, subset = (race == "black"))

b.indx <- match(blacks$surname, cnames$surname)

mean(apply(cnames[b.indx, vars], 1, max) == cnames$pctblack[b.indx])

## [1] 0.1604824

## Hispanic

hispanics <- subset(FLVoters, subset = (race == "hispanic"))

h.indx <- match(hispanics$surname, cnames$surname)

mean(apply(cnames[h.indx, vars], 1, max) == cnames$pcthispanic[h.indx])

## [1] 0.8465298

## Asian

asians <- subset(FLVoters, subset = (race == "asian"))

a.indx <- match(asians$surname, cnames$surname)

mean(apply(cnames[a.indx, vars], 1, max) == cnames$pctapi[a.indx])

## [1] 0.5642857

We find that surname alone can correctly classify 85% of Hispanic voters as
Hispanic. In contrast, classification of Asian and black voters is much worse. In
particular, only 16% of black voters are correctly classified as African-Americans. The
high true positive rate for whitesmay simply arise from the fact that they far outnumber
voters from other racial categories.

We next look at false positives. Below, we calculate the false discovery rate for each
racial group, which, for example, represents the proportion of voters who are not
white among those classified as white. We use the same indexing trick as above and
compute the proportion of white voters among those classified as whites. Subtracting
the resulting value from 1 yields the false discovery rate for whites.

indx <- match(FLVoters$surname, cnames$surname)

## white false discovery rate

1 - mean(FLVoters$race[apply(cnames[indx, vars], 1, max) ==

cnames$pctwhite[indx]] == "white")

## [1] 0.1973603
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Table 6.4. Florida Census Data at the Voting District Level.

Variable Description

county county census ID of the voting district
VTD voting district census ID (only unique within the county)
total.pop total population of the voting district
white proportion of non-Hispanic whites in the voting district
black proportion of non-Hispanic blacks in the voting district
api proportion of non-Hispanic Asians and Pacific Islanders

in the voting district
hispanic proportion of voters of Hispanic origin in the

voting district
others proportion of the other racial groups in the voting district

## black false discovery rate

1 - mean(FLVoters$race[apply(cnames[indx, vars], 1, max) ==

cnames$pctblack[indx]] == "black")

## [1] 0.3294574

## Hispanic false discovery rate

1 - mean(FLVoters$race[apply(cnames[indx, vars], 1, max) ==

cnames$pcthispanic[indx]] == "hispanic")

## [1] 0.2274755

## Asian false discovery rate

1 - mean(FLVoters$race[apply(cnames[indx, vars], 1, max) ==

cnames$pctapi[indx]] == "asian")

## [1] 0.3416667

The results show that the false discovery rate is the highest for Asian and black
voters, while it is much lower for whites and Hispanics.

Next, we attempt to improve the above prediction by taking into account where
voters live. This approach should be helpful to the extent that there exists residential
segregation based on race. In the United States, voter files contain voters’ addresses.
Using this information, our data set also provides the voting district where each voter
lives. In addition, we will utilize the Florida census data, which contains the racial
composition of each voting district. The names and descriptions of variables in this
census data set, FLCensusVTD.csv, are given in table 6.4.

How does the knowledge of residence location improve the prediction of individual
race? Whereas the census name data set contains information about the conditional
probability P (race | surname), the Florida census data set provides additional
information about P (race | residence) (proportion of each racial category among
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residents in a given voting district) and P (residence) (proportion of residents who
live in a given voting district). We wish to combine them and compute the desired
conditional probability P (race | surname and residence). Recall that these are general
ways to represent marginal, conditional, and joint probabilities. Each expression can
be evaluated using a specific racial group, surname, and residential location.

Computing P (race | surname and residence) requires Bayes’ rule. So far, we have
employed Bayes’ rule for one event A conditional on an event B , but now we need to
use Bayes’ rule conditional on both B and another event C :

P (A | B,C ) = P (B | A and C )P (A | C )
P (B | C )

,

where every probability on the right-hand side is defined conditional on another event
C (see equation (6.21)). Applying this rule yields

P (race | surname and residence)

= P (surname | race and residence)P (race | residence)
P (surname | residence)

. (6.22)

In this equation, while P (race | residence) is available from the Florida census
data, the other two conditional probabilities, P (surname | race and residence) and
P (surname | residence), are not directly given either in the census name data set or
the Florida census data set.

To overcome this difficulty, we make an additional assumption that a voter’s
surname and residence location are independent of each other, given race. This
conditional independence assumption implies that once we know a voter’s race, their
residence location does not give us any additional information about their surname. So
long as there is no strong geographical concentration of certain surnames in Florida
within a racial category, this assumption is reasonable. The assumption is violated,
for example, if Hispanic Cubans tend to have distinct names and are concentrated in
certain neighborhoods. Unfortunately, our data cannot tell us whether this assumption
is appropriate, but we will proceed assuming it is. Applying equation (6.20), the
assumption can be written as

P (surname | race and residence) = P (surname and race | residence)
P (race | residence)

= P (surname | residence)P (race | residence)
P (race | residence)

= P (surname | race). (6.23)

The first equality follows from the definition of conditional probability, whereas the
second equality is due to the application of equation (6.20).

The assumption transforms equation (6.22) into

P (race | surname and residence) = P (surname | race)P (race | residence)
P (surname | residence)

.
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We should keep this key version of the equation in mind as the one we will ultimately
use.

Note that applying the law of total probability defined in equation (6.14) and then
invoking the assumption given in equation (6.23), the denominator of equation (6.22)
can be written as the following equation, which sums over all racial categories:

P (surname | residence) =
∑

race

P (surname | race and residence)P (race | residence)

=
∑

race

P (surname | race)P (race | residence). (6.24)

In the above equations, we use
∑

race to indicate summation over all categories of the
race variable (i.e., black, white, Asian, Hispanic, and others).

While the census surname list gives P (race | surname), the prediction of individual
race based on equation (6.22) requires the computation of P (surname | race),
which is included in both the numerator and the denominator (see equation (6.24)).
Fortunately, we can use Bayes’ rule to obtain

P (surname | race) = P (race | surname)P (surname)
P (race)

. (6.25)

The two terms in the numerator of equation (6.25) can be computed using the census
name list. We compute P (race), which is not included in that data, from the Florida
census data by using the law of total probability:

P (race) =
∑

residence

P (race | residence)P (residence). (6.26)

In this equation,
∑

residence indicates summation over all values of the residence
variable (i.e., all voting districts in the data).

To implement this prediction methodology in R, we first compute P (race) using
equation (6.26). We do so by calculating a weighted average of percentages for each
racial category across voting districts with the population of the voting district, which
is proportional to P (residence), as the weight. The weighted.mean() function can
be used to compute weighted averages, in which the weights argument takes a vector
of weights.

FLCensus <- read.csv("FLCensusVTD.csv")

## compute proportions by applying weighted.mean() to each column

race.prop <-

apply(FLCensus[, c("white", "black", "api", "hispanic", "others")],

2, weighted.mean, weights = FLCensus$total.pop)

race.prop # race proportions in Florida

## white black api hispanic others

## 0.60451586 0.13941679 0.02186662 0.21279972 0.02140101
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We can now compute P (surname | race) using equation (6.25) and the census
name list.

total.count <- sum(cnames$count)

## P(surname | race) = P(race | surname) * P(surname) / P(race)

cnames$name.white <- (cnames$pctwhite / 100) *
(cnames$count / total.count) / race.prop["white"]

cnames$name.black <- (cnames$pctblack / 100) *
(cnames$count / total.count) / race.prop["black"]

cnames$name.hispanic <- (cnames$pcthispanic / 100) *
(cnames$count / total.count) / race.prop["hispanic"]

cnames$name.asian <- (cnames$pctapi / 100) *
(cnames$count / total.count) / race.prop["api"]

cnames$name.others <- (cnames$pctothers / 100) *
(cnames$count / total.count) / race.prop["others"]

Next, we compute the denominator of equation (6.22), P (surname | residence),
using equation (6.24). To do this, wemerge the census data into the voter file data using
the county and VTD variables. In the merge() function, we set the all argument to
FALSE so that nonmatching rows in both data sets will be dropped (see section 4.2.5).
Since the census data includes P (race | residence) as a variable for each racial category,
the merged data set will as well.

FLVoters <- merge(x = FLVoters, y = FLCensus, by = c("county", "VTD"),

all = FALSE)

## P(surname | residence) = sum_race P(surname | race) P(race | residence)

indx <- match(FLVoters$surname, cnames$surname)

FLVoters$name.residence <- cnames$name.white[indx] * FLVoters$white +

cnames$name.black[indx] * FLVoters$black +

cnames$name.hispanic[indx] * FLVoters$hispanic +

cnames$name.asian[indx] * FLVoters$api +

cnames$name.others[indx] * FLVoters$others

We have now calculated every quantity contained in our key version of equa-
tion (6.22): P (surname | race), P (race | residence), and P (surname | residence).
Finally, we plug the quantities into the equation to compute the predicted proba-
bility that an individual belongs to a particular race, given his or her surname and
residence.

## P(race | surname, residence) = P(surname | race) * P(race | residence)

## / P(surname | residence)

FLVoters$pre.white <- cnames$name.white[indx] * FLVoters$white /

FLVoters$name.residence
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FLVoters$pre.black <- cnames$name.black[indx] * FLVoters$black /

FLVoters$name.residence

FLVoters$pre.hispanic <- cnames$name.hispanic[indx] * FLVoters$hispanic /

FLVoters$name.residence

FLVoters$pre.asian <- cnames$name.asian[indx] * FLVoters$api /

FLVoters$name.residence

FLVoters$pre.others <- 1 - FLVoters$pre.white - FLVoters$pre.black -

FLVoters$pre.hispanic - FLVoters$pre.asian

We evaluate the accuracy of this prediction methodology and assess how much
improvement knowledge of the voters’ location of residence yields. We begin by
examining true positives for each race using the same programming trick as before.

## relevant variables

vars1 <- c("pre.white", "pre.black", "pre.hispanic", "pre.asian",

"pre.others")

## white

whites <- subset(FLVoters, subset = (race == "white"))

mean(apply(whites[, vars1], 1, max) == whites$pre.white)

## [1] 0.9371366

## black

blacks <- subset(FLVoters, subset = (race == "black"))

mean(apply(blacks[, vars1], 1, max) == blacks$pre.black)

## [1] 0.6474954

## Hispanic

hispanics <- subset(FLVoters, subset = (race == "hispanic"))

mean(apply(hispanics[, vars1], 1, max) == hispanics$pre.hispanic)

## [1] 0.85826

## Asian

asians <- subset(FLVoters, subset = (race == "asian"))

mean(apply(asians[, vars1], 1, max) == asians$pre.asian)

## [1] 0.6071429

The true positive rate for blacks has jumped from 16% to 65%.Minor improvements
are also made for Hispanic and Asian voters. Since African-Americans tend to live
close to one another in the United States, the location of voters’ residences can
be informative. For example, according to the census data, among people whose
surname is “White,” 27% are black. However, once we incorporate the location of their
residence, the predicted probability of such individuals being black ranges from 1%
to 98%. This implies that we predict some voters to be highly likely black and others
highly likely nonblack.
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## proportion of blacks among those with surname "White"

cnames$pctblack[cnames$surname == "WHITE"]

## [1] 27.38

## predicted probability of being black given residence location

summary(FLVoters$pre.black[FLVoters$surname == "WHITE"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.005207 0.081150 0.176300 0.264000 0.320000 0.983700

Finally, we compute the false positive rate for each race.

## white

1 - mean(FLVoters$race[apply(FLVoters[, vars1], 1, max)==

FLVoters$pre.white] == "white")

## [1] 0.1187425

## black

1 - mean(FLVoters$race[apply(FLVoters[, vars1], 1, max)==

FLVoters$pre.black] == "black")

## [1] 0.2346491

## Hispanic

1 - mean(FLVoters$race[apply(FLVoters[, vars1], 1, max) ==

FLVoters$pre.hispanic] == "hispanic")

## [1] 0.2153709

## Asian

1 - mean(FLVoters$race[apply(FLVoters[, vars1], 1, max) ==

FLVoters$pre.asian] == "asian")

## [1] 0.3461538

We find that the false positive rate for whites is significantly reduced. This is in large
part due to the fact that many of the black voters who were incorrectly classified as
whites using surname alone are now predicted to be black. In addition, the false positive
rate for blacks lowered by a similar amount. This example illustrates the powerful use
of conditional probability and Bayes’ rule.

6.3 Random Variables and Probability Distributions

We have so far considered various events including a coin landing on heads, twins
being both boys, and a voter being African-American. In this section, we introduce the
concept of random variables and their probability distributions, which further widens
the scope of mathematical analyses of these events.
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6.3.1 RANDOM VARIABLES
A random variable assigns a number to each event. For example, two outcomes of

a coin flip can be represented by a binary random variable where 1 indicates landing
on heads and 0 denotes landing on tails. Another example is one’s income measured
in dollars. The values of random variables must represent mutually exclusive and
exhaustive events. That is, different values cannot represent the same event and all
events should be represented by some values. For example, consider a random variable
that represents one’s racial group using five unique integers: black = 1, white = 2,
hispanic = 3, asian = 4, and others = 5. According to this definition, someone who
self-identifies as black and white will be assigned the value of 5 instead of taking the
values of 1 and 2 at the same time.

There are two types of random variables, depending on the type of values they
take. The first is a discrete random variable, which takes a finite (or at most countably
infinite) number of distinct values. Examples include categorical or factor variables
such as racial groups and number of years of education. The second type is a continuous
random variable, which takes a value within an interval of the real line. That is,
the variable can assume uncountably many values. Examples of continuous random
variables include height, weight, and gross domestic product (GDP). The use of
random variables, instead of events, facilitates the development of mathematical rules
for probability because a random variable takes numeric values. Once we define a
random variable, we can formalize a probability model using the distribution of the
random variable.

A random variable assigns a numeric value to each event of the experiment.
These values representmutually exclusive and exhaustive events, together forming
the entire sample space. A discrete random variable takes a finite or at most
countably infinite number of distinct values, whereas a continuous random
variable assumes an uncountably infinite number of values.

6.3.2 BERNOULLI AND UNIFORM DISTRIBUTIONS
We first consider the simplest example of a discrete random variable: a coin flip.

For this experiment, we define a binary random variable X , which is equal to 1 if
a coin lands on heads, and 0 otherwise. In general, a random variable that takes
two distinct values is called a Bernoulli random variable. Notice that this setup
applies to any experiment with two distinct events. Examples include {vote, abstain},
{win election, lose election}, and {correct classification, misclassification}. Thus,
whether a voter turns out (X = 1) or not (X = 0) can be represented by a Bernoulli
random variable. Generically, we consider the event X = 1 a success and the event
X = 0 a failure. We use p to denote the probability of success.

The distribution of a discrete random variable can be characterized by the proba-
bility mass function (PMF). The PMF f (x) of a random variable X is defined as the
probability that the random variable takes a particular value x, i.e., f (x) = P (X = x).
That is, given the input x, which is a specific value of choice, the PMF f (x) returns as



6.3 Random Variables and Probability Distributions 279

Probability mass function Cumulative distribution function

x
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

f(
x)

F(
x)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1

x

Figure 6.5. The Probability Mass and Cumulative Distribution Functions for a Bernoulli
Random Variable. The probability of success is 0.25. The open and solid circles represent
the exclusion and inclusion of the corresponding points, respectively.

the output the probability that a random variable X takes that value x. In the case of a
Bernoulli random variable, the PMF takes the value of p when x = 1 and that of 1− p
when x = 0. The function is zero at all other values of x.

Another important function related to probability distribution is the cumulative
distribution function (CDF). The CDF F (x) represents the cumulative probability
that a random variable X takes a value equal to or less than a specific value x, i.e.,
F (x) = P (X ≤ x). The CDF, therefore, represents the sum of the PMF f (x) evaluated
at all values up to x. Formally, the relationship between the PMF f (x) and the CDF
F (x) for a discrete random variable can be written as

F (x) = P (X ≤ x) =
∑

k≤x

f (k),

where k represents all values the random variable X can take that are less than or equal
to x. That is, the CDF equals the sum of the PMFs. The CDF ranges from 0 to 1 for
any random variable, whether continuous or discrete. It is a nondecreasing function
because as x increases, more probability will be added.

The CDF F (x) for a Bernoulli random variable is simple. It is zero for all negative
values of x because the random variable never assumes any of those values. The CDF
then takes the value of 1 − p when x = 0, which is the probability that X equals 0.
The function stays flat at 1 − p when 0 ≤ x < 1 because none of these values will be
realized. At x = 1, the CDF equals 1 because the random variable takes either the
value of 0 or 1, and stays at this value when x ≥ 1 because X does not take any value
greater than 1. Figure 6.5 graphically displays the PMF and CDF of a Bernoulli
random variable when p = 0.25. The open and solid circles represent the exclusion
and inclusion of the corresponding points, respectively.
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Probability density function
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Figure 6.6. The Probability Density and Cumulative Distribution Functions for a Uniform
Random Variable. The interval is set to [0, 1]. The open and solid circles represent the
exclusion and inclusion of the corresponding points, respectively.

The probability mass function (PMF) of a Bernoulli random variable with
success probability p is given by

f (x) =

⎧
⎪⎨

⎪⎩

p if x = 1,
1 − p if x = 0,
0 otherwise,

where f (1) and f (0) represent the probability of success and failure, respectively.
The cumulative distribution function (CDF) is given by

F (x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,
1 − p if 0 ≤ x < 1,
1 if x ≥ 1.

We now discuss a uniform random variable as a simple example of a continuous
random variable. A uniform random variable takes every value within a given interval
[a, b] with equal likelihood. The PMF is not defined for a continuous random variable
because this variable assumes an uncountably infinite number of values. Instead, we
use the probability density function (PDF) f (x) (or simply, density function), which
quantifies the likelihood that a continuous random variable X will take a specific value
x. We have already seen the concept of density, which is used to measure the height of
bins in a histogram (see section 3.3.2). The value of the PDF is nonnegative and can be
greater than 1. Moreover, like density in histograms, the area under the PDF must sum
to 1.

Since each value within the interval is equally likely to be realized, the PDF for the
uniform distribution is a flat horizontal line defined by 1/(b − a). In other words, the
PDF does not depend on x and always equals 1/(b − a) within the interval. The height
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is determined so that the area below the line equals 1 as required. The left-hand plot of
figure 6.6 graphically displays the PDF for a uniform distribution when the interval is
set to [0, 1].

We can also define the cumulative distribution function (CDF) for a continuous
random variable. The definition of the CDF is the same as the case of discrete random
variables. That is, the CDF F (x) represents the probability that a random variable X
takes a value less than or equal to a specific value x, i.e., P (X ≤ x). Graphically, the
CDF corresponds to the area under the probability density function curve up to the
value x (from negative infinity). Mathematically, this notion can be expressed using
integration instead of summation:

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt.

Since the entire area under the probability density curve has to sum to 1, we have
F (x) = 1 when x = ∞. The CDF for the uniform distribution is shown in the right-
hand plot of figure 6.6. In this case, the CDF is a straight line, as shown in the right-hand
plot of the figure, because the area under the PDF increases at a constant rate.

The probability density function (PDF) of a uniform random variable with
interval [a, b] is given by

f (x) =
{

1
b−a if a ≤ x ≤ b,

0 otherwise.

The cumulative probability function (CDF) is given by

F (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < a,

x−a
b−a if a ≤ x < b,

1 if x ≥ b.

We can easily compute the PDF andCDF of a uniform distribution in R. For the PDF
f (x), we use the dunif() function where the main argument is the value x at which
the function is evaluated and the interval is specified using the min and max arguments.
We can compute the CDF in a similar manner using the punif() function. The d in
dunif() indicates density, whereas the p in punif() stands for probability.

## uniform PDF: x = 0.5, interval = [0, 1]

dunif(0.5, min = 0, max = 1)

## [1] 1

## uniform CDF: x = 1, interval = [-2, 2]

punif(1, min = -2, max = 2)

## [1] 0.75
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The two distributions we have introduced here share a useful connection. We can
use a uniform random variable to generate a Bernoulli random variable. To do this,
notice that under the uniform distribution with unit interval [0, 1], the CDF is given
by the 45-degree line, i.e., F (x) = x. Therefore, the probability that this uniform
random variable X takes a value less than or equal to x is equal to x when 0 ≤ x ≤ 1.
Thus, in order to generate a Bernoulli random variable Y with success probability
p, we can first sample a uniform random variable X and then set Y = 1 when X
is less than p (similarly, set Y = 0 if X ≥ p) so that Y takes a value of 1 with
probability p. To do this Monte Carlo simulation in R, we use the runif() function
to generate a uniform random variable by setting the min and max arguments to 0
and 1, respectively.

sims <- 1000

p <- 0.5 # success probabilities

x <- runif(sims, min = 0, max = 1) # uniform [0, 1]

head(x)

## [1] 0.292614295 0.619951024 0.004618747 0.162426728

## [5] 0.001157040 0.655518809

y <- as.integer(x <= p) # Bernoulli; turn TRUE/FALSE to 1/0

head(y)

## [1] 1 0 1 1 1 0

mean(y) # close to success probability p, proportion of 1s vs. 0s

## [1] 0.521

6.3.3 BINOMIAL DISTRIBUTION
The binomial distribution is a generalization of the Bernoulli distribution. Instead

of a single coin flip, we consider an experiment in which the same coin is flipped
independently and multiple times. That is, a binomial random variable can repre-
sent the number of times a coin lands on heads in multiple trials of independent
coin flips.

More generally, a binomial random variable X records the number of successes in
a total of n independent and identical trials with success probability p. In other words,
a binomial random variable is the sum of n independently and identically distributed
(or i.i.d. in short) Bernoulli random variables. Recall that a Bernoulli random variable
equals either 1 or 0 with success probability p. Thus, X can take an integer value
from 0 to n. Since the binomial distribution is discrete, its PMF can be interpreted
as the probability of X taking a specific value x. The CDF represents the cumulative
probability that a binomial random variable has x or fewer successes out of n trials.
The PMF and CDF of a binomial random variable are given by the following formulas,
which involve combinations (see equation (6.10)). No simple expression exists for the
CDF, which is written as the sum of the PMFs.
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Figure 6.7. The Probability Mass and Cumulative Distribution Functions for a Binomial
Random Variable. The success probability is 0.5 and the total number of trials is 3. The
open and solid circles represent the exclusion and inclusion of the corresponding points,
respectively. Source: Adapted from example by Paul Gaborit, http://texample.net.

The probability mass function (PMF) of a binomial random variablewith success
probability p and n trials is given by

f (x) = P (X = x) =
(
n
x

)
px(1 − p)n−x . (6.27)

The cumulative distribution function (CDF) can be written as

F (x) = P (X ≤ x) =
x∑

k=0

(
n
k

)
pk(1 − p)n−k,

for x = 0, 1, . . . , n.

Figure 6.7 shows the PMF and CDF when p = 0.5 and n = 3. For example, we can
compute the probability that we obtain two successes out of three trials, which is the
height of the third bar in the left-hand plot of the figure:

f (2) = P (X = 2) =
(
3
2

)
× 0.52 × (1 − 0.5)3−2 = 3!

(3 − 2)!2!
× 0.53 = 0.375.

Calculating the PMF of a binomial distribution is straightforward. The dbinom()
function takes the number of successes as the main argument, and the size and prob
arguments specify the number of trials and success probability, respectively.

## PMF when x = 2, n = 3, p = 0.5

dbinom(2, size = 3, prob = 0.5)

## [1] 0.375

http://texample.net
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The CDF, shown in the right-hand plot of the figure, is a step function where the
function is flat and then jumps at each nonnegative integer value. The size of each
jump equals the height of the PMF at the corresponding integer value. Using the CDF,
we can compute the cumulative probability that we have at most one success out of
three trials:

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = f (0) + f (1) = 0.125 + 0.375 = 0.5.

We can compute the CDF of a binomial distribution in R using the pbinom()
function.

## CDF when x = 1, n = 3, p = 0.5

pbinom(1, size = 3, prob = 0.5)

## [1] 0.5

An intuitive explanation covers why the PMF of a binomial distribution looks like
equation (6.27). When we flip a coin n times, each unique sequence of n outcomes is
equally likely. For example, if n = 5, then the event that only the last two coin flips land
on tails {HHHTT} is equally as likely as the event that the flips alternate landing on
heads and tails {HTHTHT}, where we use H and T to denote the events that a coin
lands on heads and tails, respectively. However, for the binomial distribution only the
number of heads matters. As a result, these two events represent the same outcome.
We use combinations to count the number of ways we can have x successes out of n
trials, which is equal to nCx = (nx

)
. We multiply this by the probability of x successes,

which is equal to px (because each trial is independent), and the probability of n − x
failures, which is given by (1 − p)n−x (again because of independence).

As an application of the binomial distribution, consider the probability that one’s
vote is pivotal in an election. Your vote is pivotal if the election is tied before you
cast your ballot. Suppose that in a large population exactly 50% of voters support an
incumbent while the other half support a challenger. Further, assume that whether
voters turn out or not has nothing to do with their vote choice. Under this scenario,
what is the probability that the election ends up with an exact tie? We compute this
probability when the number of voters who turn out equals 1000, then 10,000, and
then 100,000. To compute this probability, we can evaluate the PMF of the binomial
distribution by setting the success probability to 50% and the size to the total number
of voters who turn out. We then evaluate the PMF at exactly half of all voters who turn
out. We find that the probability of a tie is quite small, even when the population of
voters is evenly divided.

## number of voters who turn out

voters <- c(1000, 10000, 100000)

dbinom(voters / 2, size = voters, prob = 0.5)

## [1] 0.025225018 0.007978646 0.002523126
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Source: Adapted from example by Paul Gaborit, http://texample.net.

Where does the name “binomial distribution” come from? The name of this
distribution is based on the following binomial theorem.

The binomial theorem shows how to compute the coefficient of each term when
expanding the power of a binomial, i.e., (a + b)n. That is, the coefficient for the
term axbn−x when expanding (a + b)n is equal to

(n
x
)
.

For example, according to the binomial theorem, when n = 4, the coefficient for the
term a2b2 when expanding (a + b)4 is equal to

(4
2

) = 6. This result is confirmed by
writing out the entire expansion:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4. (6.28)

These binomial coefficients can be organized as Pascal’s triangle, as shown in
figure 6.8. For example, the coefficients for the terms resulting from the expansion
of (a + b)4 in equation (6.28) are shown in the fifth row of Pascal’s triangle. More
generally, in Pascal’s triangle, the xth element of the nth row represents the binomial
coefficient

(n−1
x−1

)
. In addition, as shown in the figure, each element equals the sum of

the two elements just above it, leading to a straightforward sequential computation of
binomial coefficients. This makes sense because, for example, (a + b)4 can be written
as the product of (a + b)3 and (a + b),

(a + b)4 = (a3 + 3a2b + 3ab2 + b3)(a + b).

In this example, the coefficient for a2b2 is based on the sum of two products, i.e.,
3a2b × b and 3ab2 × a, and hence is equal to 6 = 3 + 3. In general, to obtain x

http://texample.net
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Figure 6.9. The Probability Density and Cumulative Distribution Functions of the Normal
Distribution.

success combinations out of n trials, we consider two scenarios—the last trial ending
in a success or ending in a failure—and add the total number of combinations under
each scenario:

(
n − 1
x

)
+
(
n − 1
x − 1

)
= (n − 1)!

x!(n − x − 1)!
+ (n − 1)!

(x − 1)!(n − x)!

= (n − 1)! × (n − x) + x
x!(n − x)!

=
(
n
x

)
.

The first (second) term corresponds to the scenario where there are x (x − 1) successes
out of (n − 1) trials and the last trial ends in a failure (success).

6.3.4 NORMAL DISTRIBUTION
As another important example of a continuous random variable, we introduce the

normal distribution. This distribution is also called the Gaussian distribution, named
after German mathematician Carl Friedrich Gauss. As implied by its name, the normal
distribution is special because, as section 6.4.2 will explore, the sum of many random
variables from the same distribution tends to follow the normal distribution even when
the original distribution is not normal.

A normal random variable can take any number on the real line (−∞, ∞). The
normal distribution has two parameters, mean μ and standard deviation σ . If X is
a normal random variable, we may write X ∼ N (μ, σ 2), where σ 2 represents the
variance (the square of standard deviation). The PDF and the CDF of the normal
distribution are given by the following formulas.
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The probability density function (PDF) of a normal random variable is given by

f (x) = 1√
2πσ

exp
{

− 1
2σ 2 (x − μ)2

}
,

for any x on the real line. The cumulative probability distribution (CDF) has no
analytically tractable form and is given by

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

1√
2πσ

exp
{

− 1
2σ 2 (t − μ)2

}
dt,

(6.29)
where X ∼ N (μ, σ 2) and exp(·) is the exponential function (see section 3.4.1).
The CDF represents the area under the PDF from negative infinity up to x.

Figure 6.9 plots the PDF (left-hand plot) and CDF (right-hand plot) for the normal
distribution, with three different sets of the mean and standard deviation. The PDF of
the normal distribution is bell shaped and centered around its mean, with the standard
deviation controlling the spread of the distribution. When the mean is 0 and standard
deviation is 1, we have the standard normal distribution. The PDF is symmetric around
the mean. Different means shift the PDF and CDF without changing their shape. In
contrast, a larger standard deviation means more variability, yielding a flatter PDF and
a more gradually increasing CDF.

The normal distribution has two important properties. First, adding a constant to
(or subtracting it from) a normal random variable yields a normal random variable
with appropriately shifted mean. Second, multiplying (or dividing) a normal random
variable by a constant also yields another normal random variable with an appropri-
ately scaledmean and standard deviation. Accordingly, the z-score of a normal random
variable follows the standard normal distribution. We formally state these properties
below.

Suppose X is a normal random variable with mean μ and standard deviation σ ,
i.e., X ∼ N (μ, σ 2). Let c be an arbitrary constant. Then, the following properties
hold:

1. A random variable defined by Z = X + c also follows a normal
distribution, with Z ∼ N (μ + c, σ 2).
2. A random variable defined by Z = c X also follows a normal distribu-
tion, with Z ∼ N (cμ, (cσ )2).

These properties imply that the z-score of a normal random variable follows the
standard normal distribution, which has zero mean and unit variance:

z-score = X − μ

σ
∼ N (0, 1).
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Figure 6.10. The Area under the Probability Density Function Curve of the Normal
Distribution. The blue area can be computed as the difference between the cumulative
distribution function (CDF) evaluated at k and −k (i.e., the gray and blue areas minus the
gray area).

In addition, it is important to note that if the data are distributed according to
the normal distribution, about two-thirds are within 1 standard deviation from the
mean and approximately 95% are within 2 standard deviations from the mean. Let us
compute the probability that a normal random variable with mean μ and standard
deviation σ lies within k standard deviations from the mean for a positive constant
k > 0. To simplify the computation, consider the z-score, which has the standard
normal distribution:

P (μ − kσ ≤ X ≤ μ + kσ ) = P (−kσ ≤ X − μ ≤ kσ )

= P
(

−k ≤ X − μ

σ
≤ k
)

= P (−k ≤ Z ≤ k),

where Z is a standard normal random variable. The first equality holds because we
subtract μ from each term whereas the second inequality holds since we divide each
term by a positive constant σ .

Thus, the desired probability equals the probability that a standard normal random
variable lies between −k and k. As illustrated in figure 6.10, this probability can be
written as the difference in the CDF evaluated at k and −k:

P (−k ≤ Z ≤ k) = P (Z ≤ k) − P (Z ≤ −k) = F (k) − F (−k),

where F (k) represents the sum of the blue and gray areas in the figure, whereas F (−k)
equals the gray area. These results can be confirmed in R with the pnorm() function,
which evaluates the CDF at its input value. This function takes the mean (mean)
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and standard deviation (sd) as two important arguments. The default is the standard
normal distribution with mean = 0 and sd = 1.

## plus minus 1 standard deviation from the mean

pnorm(1) - pnorm(-1)

## [1] 0.6826895

## plus minus 2 standard deviations from the mean

pnorm(2) - pnorm(-2)

## [1] 0.9544997

The result suggests that, under the standard normal distribution, approximately
2/3 are within 1 standard deviation from the mean and about 95% are within 2
standard deviations from the mean. We can also directly specify mean and standard
deviation without transforming a variable into a standard normal random variable.
Suppose that the original distribution has a mean of 5 and standard deviation of 2, i.e.,
μ = 5 and σ = 2. We can compute the same probabilities as above in the following
way.

mu <- 5

sigma <- 2

## plus minus 1 standard deviation from the mean

pnorm(mu + sigma, mean = mu, sd = sigma) - pnorm(mu - sigma, mean = mu, sd = sigma)

## [1] 0.6826895

## plus minus 2 standard deviations from the mean

pnorm(mu + 2*sigma, mean = mu, sd = sigma) - pnorm(mu - 2*sigma, mean = mu, sd = sigma)

## [1] 0.9544997

As an application of the normal distribution, consider the regression towards the
mean phenomenon discussed in section 4.2.4. In that section, we presented evidence
from US presidential elections demonstrating that in states where Obama received a
large share of votes in 2008, he was likely to receive a smaller share of votes in 2012 (see
section 4.2.5). Recall that our regressionmodel used Obama’s 2008 statewide vote share
to predict his vote share for the same state in the 2012 election. We use the regression
object fit1, as created in section 4.2.5.

## see the page reference above

## “Obama2012.z” is Obama’s 2012 standardized vote share

## “Obama2008.z” is Obama’s 2008 standardized vote share

fit1

##

## Call:

## lm(formula = Obama2012.z ~ -1 + Obama2008.z, data = pres)
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##

## Coefficients:

## Obama2008.z

## 0.9834

We examine the distribution of residuals and compare it with the normal distribu-
tion (see section 4.2.3 for the definition of residuals). We first present a histogram and
overlay the PDF of the normal distribution using the dnorm() function. We then use
a quantile–quantile plot (Q–Q plot) to directly compare the distribution of residuals
with the normal distribution. The qqnorm() function creates a quantile–quantile plot
using the standard normal distribution, whosemean is 0 and standard deviation is 1. To
make the standard normal distribution and the distribution of residuals comparable,
we use the scale() function to compute the z-score of residuals, or standardized
residuals, whosemean is 0 and standard deviation is 1 (see section 3.7.3). Since residuals
always have a mean of 0 (see section 4.2.3), we need only divide them by their standard
deviation to obtain standardized residuals.

e <- resid(fit1)

## z-score of residuals

e.zscore <- scale(e)

## alternatively we can divide residuals by their standard deviation

e.zscore <- e / sd(e)

hist(e.zscore, freq = FALSE, ylim = c(0, 0.4),

xlab = "Standardized residuals",

main = "Distribution of standardized residuals")

x <- seq(from = -3, to = 3, by = 0.01)

lines(x, dnorm(x)) # overlay the normal density

qqnorm(e.zscore, xlim = c(-3, 3), ylim = c(-3, 3)) # quantile-quantile plot

abline(0, 1) # 45-degree line
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Both the histogram and Q–Q plot show that the distribution of standardized
residuals is remarkably close to the standard normal distribution. Now, consider the
following probability model:

Obama’s 2012 standardized vote share

= 0.983 × Obama’s 2008 standardized vote share + ε, (6.30)

where 0.983 is the estimated slope coefficient, and the error term ε follows a normal
distribution with mean and standard deviation equal to 0 and 0.18, respectively. The
value of standard deviation is obtained as follows.

e.sd <- sd(e)

e.sd

## [1] 0.1812239

Thus, this probability model describes a potential data-generating process for
Obama’s 2012 vote share given his vote share in the previous election. Because both
the outcome variable and the predictor are standardized, the intercept is estimated
to be exactly zero and hence is not included in the coef(fit1) object (recall that
the regression line always goes through the means of the outcome variable and the
predictor).

We first analyze California where, in 2008, Obama won 61% of the votes, or a
standardized vote share of 0.87. According to the above model, what is the probability
that Obama wins a greater share of California votes in 2012? Using the pnorm()
function, we can compute the area corresponding to the 2008 vote share under the
normal distribution derived for Obama’s 2012 votes from the probability model given
in equation (6.30). We set the lower.tail argument in the pnorm() function to
FALSE in order to compute the probability that Obama wins a greater vote share in
2012 than in 2008.

CA.2008 <- pres$Obama2008.z[pres$state == "CA"]

CA.2008

## [1] 0.8720631

CA.mean2012 <- coef(fit1) * CA.2008

CA.mean2012

## Obama2008.z

## 0.8576233

## area to the right; greater than CA.2008

pnorm(CA.2008, mean = CA.mean2012, sd = e.sd, lower.tail = FALSE)

## [1] 0.4682463
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Thus, Obama is somewhat unlikely to win a larger share of California votes in 2012
than he won in 2008. In fact, the probability of this event is only 46.8%. Now consider
Texas, where in 2008 Obama received only 44% of the votes, or a standardized vote
share of −0.67. Again, under the probability model specified in equation (6.30), we
compute the probability that Obama wins a greater share of Texas votes in 2012 than
he did in the previous election.

TX.2008 <- pres$Obama2008.z[pres$state == "TX"]

TX.mean2012 <- coef(fit1) * TX.2008

TX.mean2012

## Obama2008.z

## -0.6567543

pnorm(TX.2008, mean = TX.mean2012, sd = e.sd, lower.tail = FALSE)

## [1] 0.5243271

In the case of Texas, this probability is 52.4%, which is higher than the probability
for California. This illustrates the regression towards the mean phenomenon under the
probability model based on linear regression with a normally distributed error.

6.3.5 EXPECTATION AND VARIANCE
We have introduced several commonly used random variables by defining their

PDF/PMF and CDF. These functions completely characterize the distribution of a
random variable, but often it is helpful to obtain a more concise summary of a
distribution. Previously, we used means and standard deviations in order to measure
the center and spread of a distribution. We begin by examining the expectation,
or mean, of a random variable. We should not confuse this with the sample mean
discussed earlier in this book. The sample mean refers to the average of a variable in
a particular data set, whereas the expectation or population mean represents the mean
value under a probability distribution. The sample mean fluctuates from one sample to
another, but the expectation of a random variable is of a theoretical nature and is fixed
given a probability model.

Before we examine the formal definition of expectation, a few examples will prove
instructive. Consider a Bernoulli random variable with success probability p (e.g.,
a single coin flip with the probability of landing on heads being p). What is the
expectation? This random variable can take only two values, 0 (tail) and 1 (heads), and
so the expectation can be computed as the weighted average of these two values with
(1−p) and p (i.e., the PMF) as weights, respectively. LetE(X) represent the expectation
of a random variable X . Then, the expectation of a Bernoulli random variable can be
computed as

E(X) = 0×P (X = 0)+1×P (X = 1) = 0× f (0)+1× f (1) = 0×(1− p)+1× p = p.
(6.31)
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Similarly, consider a binomial random variable with success probability p and size n
(e.g., the number of heads out of n independent and identical coin flips). This random
variable can take any nonnegative integer up to n (i.e., 0, 1, . . . , n). The expectation of
this binomial random variable is also defined as the weighted average of these values
with the weights given by the corresponding values of the PMF:

E(X) = 0 × f (0) + 1 × f (1) + · · · + n × f (n) =
n∑

x=0

x × f (x). (6.32)

While we use the weighted average to define expectation for a discrete random
variable, we need a different way of defining the expectation for a continuous variable.
We still compute the weighted average of each value in which the weights are given
by the PDF. However, the difference is that a continuous random variable can take an
uncountably infinite number of distinct values. This is done through the mathematical
operation called integration. Readers who are not familiar with calculus can skip the
details, but, for example, the expectation of a uniform random variable with interval
[a, b] is calculated as

E(X) =
∫ b

a
x × f (x) dx =

∫ b

a

x
b − a

dx = x2

2(b − a)

∣∣∣∣
b

a
= a + b

2
. (6.33)

Since each point within the interval is equally likely, the expectation of a uniform
random variable equals the midpoint of the interval.

We now summarize the general definition of expectation for discrete and continu-
ous random variables.

The expectation of a random variable is denoted by E(X) and is defined as

E(X) =
{∑

x x × f (x) if X is discrete,∫
x × f (x) dx if X is continuous,

(6.34)

where f (x) is the probability mass function or PMF (probability density function
or PDF) of the discrete (continuous) random variable X .

In the definition of expectation, the summation and integration are taken with
respect to all possible values of X . The set of all possible values that X takes is called
the support of the distribution. We now introduce the basic rules of the expectation
operator E.
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Let X and Y be random variables, and a and b be arbitrary constants. The
expectation is a linear operator that satisfies the following equalities:

1. E(a) = a.
2. E(aX) = aE(X).
3. E(aX + b) = aE(X) + b.
4. E(aX + bY) = aE(X) + bE(Y).
5. If X and Y are independent, then E(XY) = E(X)E(Y). But generally,
E(XY) �= E(X)E(Y).

Now, using these rules, we can easily compute the expectation of a binomial random
variable. Recall that a binomial random variable X with success probability p and size
n is the sum of n independently and identically distributed (i.i.d.) Bernoulli random
variables, Y1, . . . ,Yn, with the same success probability p. This suggests that we can
obtain the expectation of the binomial random variable as

E(X) = E
(

n∑

i=1

Yi

)
=

n∑

i=1

E(Yi ) = np.

This derivation is much more straightforward than the calculation that would be
required (i.e., the sum of binomial PMFs evaluated at many values) if we used the
definition of expectation given in equation (6.32).

Another useful statistic is the standard deviation and its square, variance, of a
random variable. Both concepts have already been introduced in section 2.6.2. Like
the expectation, it is important to distinguish between the standard deviation of a
particular sample and the theoretical standard deviation of a random variable. Their
interpretations match in that standard deviation is defined as the root mean square
(RMS) of deviation from the mean (see section 2.6.2). In the current context, however,
we use the expectation, rather than the sample average, to represent the mean.

The variance of a random variable X is defined as

V(X) = E[{X − E(X)}2].
The square root of V(X) is called the standard deviation.

Using the basic rules of expectation, we can write the variance as the difference
between the expectation of X2 and the expectation of X. The expectation of X2 is called
the second moment, while the expectation of X , or the mean, is called the first moment:

V(X) = E[{X − E(X)}2]
= E[X2 − 2XE(X) + {E(X)}2]
= E(X2) − 2E(X)E(X) + {E(X)}2
= E(X2) − {E(X)}2. (6.35)
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This alternative expression of variance is useful. For example, the variance of a
Bernoulli random variable can be derived by noting that X = X2 regardless of whether
X equals 1 or 0 (because 12 = 1 and 02 = 0):

V(X) = E(X) − {E(X)}2 = p(1 − p). (6.36)

This variance is greatest when p = 0.5. This makes intuitive sense because when p is
smaller, for example, a Bernoulli random variable is more likely to equal 0 and hence
has a smaller variance and hence less variation.

Similarly, using equation (6.35), we can also calculate the variance of a uniform
random variable with the interval [a, b], though readers unfamiliar with integration
may ignore the details of the following derivation:

V(X) = E(X2) − {E(X)}2 =
∫ b

a

x2

b − a
dx −

(
a + b
2

)2

= x3

3(b − a)

∣∣∣∣
b

a
−
(
a + b
2

)2

= 1
12

(b − a)2. (6.37)

Like expectation, variance can be approximated through Monte Carlo simulation.
Using the set of Bernoulli draws we generated earlier, we compute the sample variance,
which should approximate the population variance.

## theoretical variance: p was set to 0.5 earlier

p * (1 - p)

## [1] 0.25

## sample variance using “y” generated earlier

var(y)

## [1] 0.2498088

Variance has several important properties. For example, since variance involves the
expectation of squared distance from the mean, adding a constant to a random variable
only shifts the variable and its mean by the same amount without altering its variance.
However, the multiplication of a constant and a random variable changes its variance:

V(aX) = E[{aX − aE(X)}2] = a2V(X). (6.38)

We summarize these properties below.
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Let X andY be random variables, and a and b be arbitrary constants. The variance
operator V has the following properties:

1. V(a) = 0.

2. V(aX) = a2V(X).

3. V(X + b) = V(X).
4. V(aX + b) = a2V(X).

5. If X and Y are independent, V(X + Y) = V(X) + V(Y).

To compute the variance of a binomial random variable X , we use its status as the
sum of n independently and identically distributed (i.i.d.) Bernoulli random variables,
Y1,Y2, . . . ,Yn, with success probability p:

V(X) = V
(

n∑

i=1

Yi

)
=

n∑

i=1

V(Yi ) = np(1 − p).

As another example, consider two independent normal random variables X and Y .
Suppose that X has mean μX and variance σ 2

X , whereas Y has mean μY and variance
σ 2
Y . We write this setting compactly as X ∼ N (μX, σ 2

X) and Y ∼ N (μY , σ 2
Y ). What is

the distribution of Z = aX + bY + c? The discussion in section 6.3.4 implies that Z
is also a normal random variable. Using the rules of expectation and variance, we can
derive the mean and variance as

E(Z) = aE(X) + bE(Y) + c = aμX + bμY + c,

V(Z) = V(aX + bY + c) = a2V(X) + b2V(Y) = a2σ 2
X + b2σ 2

Y ,

respectively. Therefore, we have Z ∼ N (aμX + bμY + c, a2σ 2
X + b2σ 2

Y ).

6.3.6 PREDICTING ELECTION OUTCOMES WITH UNCERTAINTY
We next revisit the prediction of election outcomes using preelection polls. In

section 4.1’s introduction of the topic, our prediction did not include a measure
of uncertainty. However, polling has sampling variability because we interview only
a fraction of a large population. Suppose that we conduct a preelection poll un-
der the exact same conditions multiple times. Each time, we obtain a represen-
tative sample of the target population and yet the sample consists of different
voters. This means that the estimated support for a candidate will differ for each
sample.
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To capture this sampling variability, consider the following probability model.
Suppose that the Election Day outcome represents the true proportion of Obama
and McCain supporters in the population of voters within each state. We further
assume that the fraction of voters who support a third-party candidate is negligible.
We therefore focus on the two-party support rate for Obama, p j , and McCain, 1− p j ,
within each state j . The CSV data file, pres08.csv, contains the 2008 US presidential
election results (see table 4.1). We first compute the two-party support rate for
Obama.

pres08 <- read.csv("pres08.csv")

## two-party vote share

pres08$p <- pres08$Obama / (pres08$Obama + pres08$McCain)

We assume that for each hypothetical sampling, we interview 1000 voters who
are randomly selected from the population. The binomial distribution with success
probability p and size 1000 within each state is our model for Obama’s support
estimate based on a preelection poll. Using Monte Carlo simulation, we estimate
Obama’s support within each state, then allocate that state’s Electoral College votes
to the winning candidate. We will repeat this procedure many times to describe the
uncertainty in preelection polling estimates that is due to sampling variability.

To sample from the binomial distribution in R, we use the rbinom() function.
The prob argument of this function can take a vector of success probabilities. For
each success probability, the function will return a vector of binomial random variable
realizations. That is, given a p j probability of success and n = 1000 voters, R will
generate the number of votes for Obama. If a majority of these 1000 voters support
Obama, we assign the state’s Electoral College votes to Obama. We construct a
histogram of these predicted Electoral College votes for Obama.

n.states <- nrow(pres08) # number of states

n <- 1000 # number of respondents

sims <- 10000 # number of simulations

## Obama’s electoral votes

Obama.ev <- rep(NA, sims)

for (i in 1:sims) {

## samples number of votes for Obama in each state

draws <- rbinom(n.states, size = n, prob = pres08$p)

## sums state’s Electoral College votes if Obama wins the majority

Obama.ev[i] <- sum(pres08$EV[draws > n / 2])

}

hist(Obama.ev, freq = FALSE, main = "Prediction of election outcome",

xlab = "Obama’s Electoral College votes")

abline(v = 364, col = "blue") # actual result
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We find that all prediction draws are above the winning threshold of 270 votes.
While the highest density of the histogram roughly corresponds to the actual number
of Electoral College votes Obama won, the distribution of predictions is skewed. As a
result, the mean andmedian values are lower than the actual number of Obama’s votes.

summary(Obama.ev)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 291.0 340.0 353.0 352.2 364.0 401.0

We can also analytically compute the expected value of Obama’s Electoral College
votes under this probability model. Let S j represent the number of respondents
(among a total of 1000 respondents) to a preelection poll who express support for
Obama in state j . We use v j to denote the number of Electoral College votes for state j .
Then, the expected number of Obama’s Electoral College votes is

E(Obama’s votes) =
51∑

j=1

v j × P (Obama wins state j ) =
51∑

j=1

v j × P (S j > 500).

(6.39)

To compute this expectation in R, we use the pbinom() function, which evaluates
the CDF of the binomial distribution at its input value. As in dbinom(), the function
takes as its arguments size and prob. In addition, we set the lower.tail argument
to FALSE so that the function can be used to evaluate P (S j > 500) rather than
P (S j ≤ 500). The threshold 500 is based on the fact that we predict Obama as a winner
for a state if more than half of 1000 respondents support him.
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mean(Obama.ev)

## [1] 352.1646

## probability of binomial random variable taking greater than n/2 votes

sum(pres08$EV * pbinom(n / 2, size = n, prob = pres08$p, lower.tail = FALSE))

## [1] 352.1388

As expected, the analytically derived expected value is close to the approximate value
based onMonte Carlo simulations. Similarly, we can compute the variance of Obama’s
electoral votes:

V(Obama’s predicted votes) =
51∑

j=1

V(v j1{S j > 500})

=
51∑

j=1

v2
j P (S j > 500)

(
1 − P (S j > 500)

)
.

In this derivation, 1{·} represents the indicator function, which returns 1 (0) if the
statement inside the curly braces is true (false). In addition, the first equality follows
from the fact that the variance of the sum of independent random variables equals
the sum of their respective variances. We also used the expression for the variance of
a Bernoulli random variable given in equation (6.36) because we are evaluating the
variance of a Bernoulli random variable 1{S j > 500}. We compute the variance first
with the theoretical expression above and then with Monte Carlo simulation draws.

## approximate variance using Monte Carlo draws

var(Obama.ev)

## [1] 268.7592

## theoretical variance

pres08$pb <- pbinom(n / 2, size = n, prob = pres08$p, lower.tail = FALSE)

V <- sum(pres08$pb * (1 - pres08$pb) * pres08$EV^2)

V

## [1] 268.8008

## approximate standard deviation using Monte Carlo draws

sd(Obama.ev)

## [1] 16.39388

## theoretical standard deviation

sqrt(V)

## [1] 16.39515
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The result implies that with 1000 respondents in each state, our poll-based pre-
diction of Obama’s Electoral College votes varies from one sample to another. The
standard deviation of our prediction is about 16 Electoral College votes. Given that
Obama won the election with a much greater margin, this sampling variation did not
significantly impact the preelection polls’ ability to predict the winner.

6.4 Large Sample Theorems

As the final topic of this chapter, we introduce two important probabilistic regu-
larities in large samples. In a wide range of probabilistic models, certain patterns will
emerge as the sample size increases. These regularities will quantify the uncertainty
of our data analysis in the next chapter. In this section, we discuss two large sample
theorems (asymptotic theorems): the law of large numbers and the central limit theorem.

6.4.1 THE LAW OF LARGE NUMBERS
The law of large numbers states that as the sample size increases, the sample average

converges to the expectation or population average.

Suppose that we obtain a random sample of n independently and identically
distributed (i.i.d.) observations, X1, X2, . . . , Xn, from a probability distribution
with expectation E(X). The law of large numbers states

Xn = 1
n

n∑

i=1

Xi → E(X), (6.40)

where we use → as shorthand for convergence.

In the theorem, X without subscript i represents a generic random variable,
whereas Xi is the random variable for the i th observation. Although the precise
mathematical meaning of convergence, as well as the precise conditions under which
this theorem holds, are beyond the scope of this book, we emphasize that this theorem
is applicable to a wide range of probability distributions. Intuitively speaking, the
law states that the sample average, Xn, will better approximate the expectation,
E(X), as the sample size increases. The law of large numbers is powerful because
it can be applied in most settings without knowledge of the underlying probability
distribution.

We have already implicitly used the law of large numbers in a variety of contexts.
The law of large numbers justifies the use of random sampling in surveys (see
section 3.4.1). As we increase the number of randomly sampled respondents, the
average response among them becomes closer to the true average of the population.
In preelection polls, so long as the sample size is sufficiently large, the sample fraction
of those who support Obama approximates the population fraction of voters who are
Obama supporters. The law of large numbers enables researchers to talk to a small
fraction of randomly sampled individuals in order to infer the opinion of the entire
population.
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In terms of a probability model, we can think of preelection polling as the sum of
independently and identically distributed (i.i.d.) Bernoulli random variables, where
a respondent is randomly drawn from a population of Obama supporters and non-
supporters. That is, we define Xi as an indicator variable of voter i being an Obama
supporter, i.e., Xi = 1 if voter i is an Obama supporter and Xi = 0 otherwise. The
proportion of Obama supporters in the population is given by p. Then, the law of
large numbers given in equation (6.40) can be directly applied. The sample fraction
of Obama’s supporters approaches the expectation, or the population proportion of
Obama supporters, i.e., E(X) = p.

Similarly, we can rely on the law of large numbers in randomized experiments
when computing the difference-in-means between the (randomly divided) treatment
and control groups to estimate the average treatment effect (see section 2.4.1). If we
consider a population of potential outcomes, as the sizes of the treatment and control
groups increase, the sample average of the observed outcome better approximates the
expected potential outcome. In other words, we can apply the law of large numbers
shown in equation (6.40) by setting X to each potential outcome, Y(1) in the treatment
group and Y(0) in the control group.

The law of large numbers can also justify the use of Monte Carlo simulations.
For example, in the birthday problem described in section 6.1.4, we computed the
fraction of simulation trials where at least two birthdays were the same, in order to
approximate the true probability of the event occurrence. When applying the law
of large numbers shown in equation (6.40), this probability can be written as the
expectation by defining a Bernoulli random variable that equals 1 if at least two
birthdays match and 0 otherwise. We can then think of the fraction of simulation trials
as the sample mean. Similarly, we solved the Monty Hall problem by computing the
fraction of simulation trials in which a contender won a car rather than a goat (see
section 6.2.2).

To illustrate the law of large numbers, we conduct a Monte Carlo simulation. We
randomly sample from a binomial distribution with success probability p = 0.2 and
size n = 10. We then examine, as the number of binomial draws increases, how the
sample mean approaches the expectation, which equals E(X) = np = 2 in this case.
To calculate the samplemean after a single draw, two draws, and so on, all the way up to
1000 draws, we apply the cumsum() function. This function computes the cumulative
sum, which combines all values up to and including the current value, for each position
in a vector. For example, for a vector of length 3, (5, 3, 4), the cumsum() function will
return another vector of length 3 that contains the cumulative sum (5, 8, 12).We obtain
the desired average for each sample size (5, 4, 4) by dividing the cumulative sum vector
by a vector that contains the number of elements used for the summation, i.e., (1, 2, 3).
According to the law of large numbers, a large number of draws should produce a
sample mean close to the expectation.

sims <- 1000

## 3 separate simulations for each

x.binom <- rbinom(sims, p = 0.2, size = 10)

## computing sample mean with varying sample size

mean.binom <- cumsum(x.binom) / 1:sims
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In addition, we use the uniform distribution as an example of continuous random
variables. The runif() function generates a random sample from this distribution.

## default runif() is uniform(0, 1)

x.unif <- runif(sims)

mean.unif <- cumsum(x.unif) / 1:sims

Finally, we plot the results. As the sample size increases, the sample mean ap-
proaches the expectation.

## plot for binomial

plot(1:sims, mean.binom, type = "l", ylim = c(1, 3),

xlab = "Sample size", ylab = "Sample mean", main = "Binomial(10, 0.2)")

abline(h = 2, lty = "dashed") # expectation

## plot for uniform

plot(1:sims, mean.unif, type = "l", ylim = c(0, 1),

xlab = "Sample size", ylab = "Sample mean", main = "Uniform(0, 1)")

abline(h = 0.5, lty = "dashed") # expectation
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6.4.2 THE CENTRAL LIMIT THEOREM
The law of large numbers is useful but cannot quantify how good the approximation

becomes as the sample size increases. For example, in the above figure, convergence
appears to occur more quickly in the case of the uniform distribution than the binomial
distribution. In practice, however, we observe only the sample mean and do not know
the expectation. The former is something we compute from the data but the latter is a
theoretical concept. Therefore, we need a different tool to know how well our sample
mean approximates the expectation.
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Figure 6.11. The Quincunx as a Machine to Illustrate the Central Limit Theorem.

The central limit theorem shows that the distribution of the samplemean approaches
the normal distribution as the sample size increases. This is a remarkable result because,
like the law of large numbers, it applies to a wide range of distributions. The result is
useful, as shown in the next chapter, when quantifying the uncertainty of our estimates.

Before we explain the central limit theoremmore formally, we discuss the quincunx,
invented by Sir Francis Galton who first demonstrated the regression towards themean
phenomenon (section 4.2.4), as a machine that illustrates the theorem. Figure 6.11
presents a picture of a quincunx owned by the author. Red balls are dropped, one at
a time, from the tiny hole at the top. The balls, as they fall, bounce off each peg either
to its right or left before settling into one of the slots at the bottom of the machine. As
seen in the figure, the balls will cluster in the middle, forming a bell-shaped curve that
looks like a normal distribution.

Why does the quincunx create a bell-shaped curve? When a ball hits a peg, the ball
has a 50–50 chance of bouncing off to its right or left. Although each path from the
top to the bottom of the quincunx is equally likely, the ball has more ways to fall into
a middle slot than a side slot. More formally, the total number of ways in which a ball
reaches a particular slot can be computed using Pascal’s triangle, as shown in figure 6.8.
As illustrated in the figure, for example, if there are 5 lines of pegs in the quincunx, there
are 20 ways for a ball to fall into the middle two slots.

We can understand the quincunx as a machine that generates a sequence of
independently and identically distributed (i.i.d.) binomial random variables X with
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success probability 0.5 and size n, where n is the number of lines of pegs. Recall that a
binomial random variable is the sum of n i.i.d. Bernoulli random variables. This means
that if the central limit theorem holds, then we expect a binomial random variable to
approximate the normal distribution as the sample size, or the number of balls in this
case, increases. In fact, this is exactly what we observe.

The central limit theorem applies not only to the binomial distribution but also to
other distributions. This is important because inmost practical settings we do not know
the probability distribution that generates the data. We now more formally state the
central limit theorem.

Suppose that we obtain a random sample of n independently and identically
distributed (i.i.d.) observations, X1, X2, . . . , Xn, from a probability distribution
with mean E(X) and variance V(X). Let us denote the sample average by
Xn =∑n

i=1 Xi/n. Then, the central limit theorem states

Xn − E(X)√
V(X)/n

� N (0, 1). (6.41)

In the theorem, � indicates “convergence in distribution” as the sample size n
increases.

While formula (6.41) appears complex at first glance, it has a straightforward
interpretation. The theorem says that the z-score of the sample mean converges in
distribution to the standard normal distribution orN (0, 1) as the sample size increases.
Recall the definition of z-score given in equation (3.1). In order to standardize a
random variable, we subtract its mean from it and then divide it by its standard
deviation. As a result, any z-score has zero mean and unit variance.

To show that the left-hand side of formula (6.41) represents the z-score of the sample
mean, we first note that the expectation of the sample mean Xn is the expectation of
the original random variable X . Using the rules of the expectation operator, we obtain

E(Xn) = E
(
1
n

n∑

i=1

)
= 1

n

n∑

i=1

E(Xi ) = E(X). (6.42)

We next exploit the fact that the variance of two independent random variables equals
the sum of their variances. The variance of the sample mean then is given by

V(Xn) = V
(
1
n

n∑

i=1

Xi

)
= 1

n2

n∑

i=1

V(Xi ) = 1
n
V(X). (6.43)

To derive this expression, we also used formula (6.38). This shows that the denom-
inator of the left-hand side of formula (6.41) represents the standard deviation of
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the sample mean. Hence, the entire quantity in the left-hand side of formula (6.41)
corresponds to the z-score of the sample mean.

Monte Carlo simulations can illustrate the central limit theorem. We consider
two distributions as examples: the binomial distribution with success probability
p = 0.2 and size n = 10, and the uniform distribution with the range [0, 1].
Recall that the mean and variance of this binomial distribution are np = 10 ×
0.2 = 2 and np(1 − p) = 10 × 0.2 × (1 − 0.2) = 1.6, respectively. For
this uniform distribution, the mean and variance are (a + b)/2 = 1/2 and
(b − a)2/12 = 1/12, respectively. We use these results to compute the z-scores
and see whether their distributions can be approximated by the standard normal
distribution.

## sims = number of simulations

n.samp <- 1000

z.binom <- z.unif <- rep(NA, sims)

for (i in 1:sims) {

x <- rbinom(n.samp, p = 0.2, size = 10)

z.binom[i] <- (mean(x) - 2) / sqrt(1.6 / n.samp)

x <- runif(n.samp, min = 0, max = 1)

z.unif[i] <- (mean(x) - 0.5) / sqrt(1 / (12 * n.samp))

}

## histograms; nclass specifies the number of bins

hist(z.binom, freq = FALSE, nclass = 40, xlim = c(-4, 4), ylim = c(0, 0.6),

xlab = "z-score", main = "Binomial(0.2, 10)")

x <- seq(from = -3, to = 3, by = 0.01)

lines(x, dnorm(x)) # overlay the standard normal PDF

hist(z.unif, freq = FALSE, nclass = 40, xlim = c(-4, 4), ylim = c(0, 0.6),

xlab = "z-score", main = "Uniform(0, 1)")

lines(x, dnorm(x))
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The above simulations are based on a sample size of 1000. We see that the standard
normal distribution approximates the distribution of the z-score well. What about for
a smaller sample size? Below, we conduct the same simulation using a sample size of
100 (the code is identical to the one above, aside from the change in sample size, and
therefore omitted).
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We observe that the approximation is poorer than before for the binomial distrib-
ution, whereas the central limit theorem holds well for the uniform distribution. The
theorem does not tell us how large the sample size must be for a good approximation.
As shown here, the answer to this question depends on the distribution of the original
random variables. Nevertheless, what is incredible about the central limit theorem is
that the z-score of the sample mean converges in distribution to the standard normal
distribution regardless of the distribution of the original random variable.

6.5 Summary

In this chapter, we studied probability. We first introduced two different interpreta-
tions of probability, frequentist and Bayesian. Despite its competing interpretations,
probability has a unified mathematical foundation with its basic definition and axioms.
We then covered the basic rules of probability, including the law of total probability,
the definition of conditional probability, the concept of independence, and Bayes’
rule. We applied these rules to various problems including the prediction of an
individual’s race from their surname and residence location.

Next, we examined the concepts of random variables and their probability distri-
butions. We introduced basic distributions such as uniform, binomial, and normal
distributions. These distributions can be characterized by the probability density
function and probability mass function for continuous and discrete random vari-
ables, respectively. The cumulative distribution function represents the cumulative
probability that a random variable takes a value less than or equal to a specified value.
Using the probability mass and density functions, we showed how to compute the
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Figure 6.12. The Enigma Machine and its Plugboard. Photographer: Karsten Sperling,
http://spiff.de/photo.

expectation and variance of a random variable. We used these tools to quantify the
sampling uncertainty regarding the polling prediction of election results.

Lastly, we discussed the two fundamental large sample approximation theorems.
The power of these theorems is that they can be applied to the sample mean of
virtually any random variable given a sufficient sample size. The law of large numbers
states that the sample mean approaches the expectation or the population mean as
the sample size increases. This justifies the use of the sample mean as an estimator of
the population mean in survey sampling and randomized experiments. The central
limit theorem states that the z-score of the sample mean is approximately distributed
according to the standard normal distribution. In the next chapter, we will use these
large sample theorems to quantify the degree of uncertainty regarding the empirical
conclusions drawn from our data analyses.

6.6 Exercises

6.6.1 THE MATHEMATICS OF ENIGMA
The Enigma machine is the most famous cipher machine to date. Nazi Germany

used it duringWorldWar II to encrypt messages so that enemies could not understand
them. The story of the British cryptanalysts who successfully deciphered Enigma has
become the subject of multiple movies (Enigma (2001), The Imitation Game (2014)). In
this exercise, we will focus our attention on a simplified version of the Enigmamachine,
which we name “Little Enigma.” Like the real Enigma machine shown in the left panel
of figure 6.12, this machine consists of two key components. First, the Little Enigma

http://spiff.de/photo
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machine has 5 different rotors, each of which comes with 10 pins with numbers ranging
from 0 to 9. Second, as shown in the right panel of figure 6.12, the plugboard contains
26 holes, corresponding to the 26 letters of the alphabet. In addition, 13 cables connect
all possible pairs of letters. Since a cable has two ends, one can connect, for example,
the letter A with any of the other 25 letters present in the plugboard.

To either encode a message or decode an encrypted message, one must provide
the Little Enigma machine with the correct 5-digit passcode to align the rotors, and
the correct configuration of the plugboard. The rotors are set up just like many
combination locks. For example, the passcode 9–4–2–4–9 means that the 5 rotors
display the numbers 9, 4, 2, 4, and 9 in that order. In addition, the 13 cables connecting
the letters in the plugboard must be appropriately configured. The purpose of the
plugboard is thus to scramble the letters. For example, if B is connected to W, the Little
Enigma machine will switch B with W and W with B to encode a message or decode
an encoded message. Thus, a sender types a message on the keyboard, the plugboard
scrambles the letters, and the message is sent in its encrypted form. A receiver decodes
the encrypted message by retyping it on a paired Little Enigma machine that has the
same passcode and plugboard configuration.

1. How many different 5-digit passcodes can be set on the 5 rotors?

2. How many possible configurations does the plugboard provide? In other words,
how many ways can 26 letters be divided into 13 pairs?

3. Based on the previous two questions, what is the total number of possible settings
for the Little Enigma machine?

4. Five cryptanalytic machines have been developed to decode 1500 messages
encrypted by the Little Enigma machine. The table below presents information
on the number of messages assigned to each machine and the machine’s failure
rate (i.e., the percentage of messages the machine was unable to decode). Aside
from this information, we do not know anything about the assignment of each
message to a machine or whether the machine was able to correctly decode the
message.

Machine Number of messages Failure rate

Banburismus 300 10%
Bombe 400 5%
Herivel tip 250 15%
Crib 340 17%
Hut 6 210 20%

Suppose that we select one message at random from the pool of all 1500 messages
but find out thismessage was not properly decoded.Whichmachine is most likely
responsible for this mistake?
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5. Write an R function that randomly configures the plugboard. This function will
take no input but will randomly select a set of 13 pairs of letters. The output object
should be a 2 × 13 matrix for which each column represents a pair of letters.
You may use the built-in R object letters, which contains the 26 letters of the
alphabet as a character vector. Name the function plugboard.

6. Write an R function that encodes and decodes a message given a plugboard
configuration set by the plugboard() function from the previous question.
This function should take as inputs the output of the plugboard() function,
as well as a message to be encoded (decoded), and return an encoded (decoded)
message. Youmay wish to use the gsub() function, which replaces a pattern in a
character string with another specified pattern. The tolower() function, which
makes characters in a character vector lowercase, and toupper() function,
which capitalizes characters in a character vector, can also help.

6.6.2 A PROBABILITY MODEL FOR BETTING MARKET ELECTION PREDICTION
Earlier in this chapter, we used preelection polls with a probability model to predict

Obama’s electoral vote share in the 2008 US election. In this exercise, we will apply
a similar procedure to the Intrade betting market data analyzed in an exercise in
chapter 4 (see section 4.5.1).4 The 2008 Intrade data are available as intrade08.csv.
The variable names and descriptions of this data set are available in table 4.9. Recall
that each row of the data set represents daily trading information about the contracts
for either the Democratic or Republican Party nominee’s victory in a particular state.
The 2008 election results data are available as pres08.csv, with variable names and
descriptions appearing in table 4.1.

1. We analyze the contract of the Democratic Party nominee winning a given state
j . Recall from section 4.5.1 that the data set contains the contract price of the
market for each state on each day i leading up to the election. We will interpret
PriceD as the probability pi j that the Democrat would win state j if the election
were held on day i . To treat PriceD as a probability, divide it by 100 so it ranges
from 0 to 1. How accurate is this probability? Using only the data from the day
before Election Day (November 4, 2008) within each state, compute the expected
number of electoral votes Obama is predicted to win and compare it with the
actual number of electoral votes Obama won. Briefly interpret the result. Recall
that the actual total number of electoral votes for Obama is 365, not 364, which
is the sum of electoral votes for Obama based on the results data. The total of
365 includes a single electoral vote that Obama garnered from Nebraska’s 2nd
Congressional District. McCain won Nebraska’s 4 other electoral votes because
he won the state overall.

4 This exercise is based on David Rothschild (2009) “Forecasting elections: Comparing prediction markets,
polls, and their biases.” Public Opinion Quarterly, vol. 73, no. 5, pp. 895–916.
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2. Next, using the same set of probabilities used in the previous question, simulate
the total number of electoral votes Obama is predicted to win. Assume that the
election in each state is a Bernoulli trial where the probability of success (Obama
winning) is pi j . Display the results using a histogram. Add the actual number of
electoral votes Obama won as a solid line. Briefly interpret the result.

3. In prediction markets, people tend to exaggerate the likelihood that the trailing
or “long shot” candidate will win. This means that candidates with a low (high)
pi j have a true probability that is lower (higher) than their predicted pi j . Such a
discrepancy could introduce bias into our predictions, so we want to adjust our
probabilities to account for it.We do so by reducing the probability for candidates
who have a less than 0.5 chance of winning, and increasing the probability for
those with a greater than 0.5 chance. We will calculate a new probability p∗

i j using
the following formula proposed by a researcher: p∗

i j = �(1.64×�−1(pi j )) where
�(·) is the CDF of a standard normal random variable and �−1(·) is its inverse,
the quantile function. The R functions pnorm() and qnorm() can be used to
compute �(·) and �−1(·), respectively. Plot pi j , used in the previous questions,
against p∗

i j . In addition, plot this function itself as a line. Explain the nature of the
transformation.

4. Using the new probabilities p∗
i j , repeat questions 1 and 2. Do the new probabilities

improve predictive performance?

5. Compute the expected number of Obama’s electoral votes using the new proba-
bilities p∗

i j for each of the last 120 days of the campaign. Display the results as a
time-series plot. Briefly interpret the plot.

6. For each of the last 120 days of the campaign, conduct a simulation as in
question 2, using the new probabilities p∗

i j . Compute the quantiles of Obama’s
electoral votes at 2.5% and 97.5% for each day. Represent the range from 2.5%
to 97.5% for each day as a vertical line, using a loop. Also, add the estimated
total number of Obama’s electoral votes across simulations. Briefly interpret the
result.

6.6.3 ELECTION FRAUD IN RUSSIA
In this exercise, we use the rules of probability to detect election fraud by examining

voting patterns in the 2011 Russian State Duma election.5 The State Duma is the federal
legislature of Russia. The ruling political party, United Russia, won this election, but
to many accusations of election fraud, which the Kremlin, or Russian government,
denied. As shown in figure 6.13, some protesters highlighted irregular patterns of
voting as evidence of election fraud. In particular, the protesters pointed out the

5 This exercise is based on Arturas Rozenas (2016) “Inferring election fraud from distributions of vote-
proportions.” Working paper.
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Figure 6.13. Protesters in the Aftermath of the 2011 State Duma Election. The poster
says, “We don’t believe Churov! We believe Gauss!’’ Churov is the head of the Central
Electoral Commission, and Gauss refers to an 18th century German mathematician, Carl
Friedrich Gauss, whom the Gaussian (normal) distribution was named after. Source:
Maxim Borisov, trv-science.ru.

Table 6.5. Russian and Canadian Election Data.

Variable Description

N total number of voters in a precinct
turnout total turnout in a precinct
votes total number of votes for the winner in a precinct

Note: The results of each election are stored in a data frame. The RData file
fraud.RData contains data on four elections: the 2007 and 2011 Russian Duma
elections, the 2012 Russian presidential election, and the 2011 Canadian election.

relatively high frequency of common fractions such as 1/4, 1/3, and 1/2 in the official
vote shares.

We analyze the official election results, contained in the russia2011 data frame
in the RData file fraud.RData, to investigate whether there is any evidence for
election fraud. The RData file can be loaded using the load() function. Besides
russia2011, the RData file contains the election results from the 2003 Russian Duma
election, the 2012 Russian presidential election, and the 2011 Canadian election, as
separate data frames. Table 6.5 presents the names and descriptions of variables used
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in each data frame. Note: Part of this exercise may require computationally intensive
code.

1. To analyze the 2011 Russian election results, first compute United Russia’s
vote share as a proportion of the voters who turned out. Identify the 10 most
frequently occurring fractions for the vote share. Create a histogram that sets
the number of bins to the number of unique fractions, with one bar created for
each uniquely observed fraction, to differentiate between similar fractions like
1/2 and 51/100. This can be done by using the breaks argument in the hist()
function. What does this histogram look like at fractions with low numerators
and denominators such as 1/2 and 2/3?

2. The mere existence of high frequencies at low fractions may not imply election
fraud. Indeed, more numbers are divisible by smaller integers like 2, 3, and 4 than
by larger integers like 22, 23, and 24. To investigate the possibility that the low
fractions arose by chance, assume the following probability model. The turnout
for a precinct has a binomial distribution, whose size equals the number of voters
and success probability equals the turnout rate for the precinct. The vote share
for United Russia in this precinct is assumed to follow a binomial distribution,
conditional on the turnout, where the size equals the number of voters who
turned out and the success probability equals the observed vote share in the
precinct. Conduct a Monte Carlo simulation under this alternative assumption
(1000 simulations should be sufficient). What are the 10 most frequent vote
share values? Create a histogram similar to the one in the previous question.
Briefly comment on the results you obtain. Note: This question requires a
computationally intensive code. Write a code with a small number of simulations
first and then run the final code with 1000 simulations.

3. To judge the Monte Carlo simulation results against the actual results of the
2011 Russian election, we compare the observed fraction of observations within
a bin of certain size with its simulated counterpart. To do this, create histograms
showing the distribution of question 2’s four most frequently occurring fractions,
i.e., 1/2, 1/3, 3/5, and 2/3, and compare them with the corresponding fractions’
proportion in the actual election. Briefly interpret the results.

4. We now compare the relative frequency of observed fractions with the simulated
ones beyond the four fractions examined in the previous question. To do this, we
choose a bin size of 0.01 and compute the proportion of observations that fall into
each bin. We then examine whether or not the observed proportion falls within
the 2.5 and 97.5 percentiles of the corresponding simulated proportions. Plot the
result with the horizontal axis as the vote share and vertical axis as the estimated
proportion. This plot will attempt to reproduce the one held by protesters in
figure 6.13. Also, count the number of times that the observed proportions
fall outside the corresponding range of simulated proportions. Interpret the
results.
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5. To put the results of the previous question into perspective, apply the procedure
developed in the previous question to the 2011 Canadian elections and the 2003
Russian election, where no major voting irregularities were reported. In addition,
apply this procedure to the 2012 Russian presidential election, where election
fraud allegations were reported. No plot needs to be produced. Briefly comment
on the results you obtain. Note: This question requires a computationally
intensive code. Write a code with a small number of simulations first and then
run the final code with 1000 simulations.



Chapter 7

Uncertainty

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to
reality.
— Albert Einstein, Geometry and Experience

Thus far, we have studied various data analysis techniques that can extract useful
information from data. We have used these methods to draw causal inferences,
measure quantities of interest, make predictions, and discover patterns in data. One
important remaining question, however, is how certain we can be of our empirical
findings. For example, if in a randomized controlled trial the average outcome differs
between the treatment and control groups, when is this difference large enough for
us to conclude that the treatment of interest affects the outcome, on average? Did
the observed difference result from chance? In this chapter, we consider how to
separate signals from noise in data by quantifying the degree of uncertainty. We do
so by applying the laws of probability introduced in the previous chapter. We cover
several concepts andmethodologies to formally quantify the level of uncertainty. These
include bias, standard errors, confidence intervals, and hypothesis testing. Finally, we
describe ways to make inferences from linear regression models with measures of
uncertainty.

7.1 Estimation

In earlier chapters, we showed how to infer public opinion in a population through
survey sampling (chapter 3) and estimate causal effects through randomized controlled
trials (chapter 2). In these examples, researchers want to estimate the unknown value
of a quantity of interest using observed data. We refer to the quantity of interest as a
parameter and the method to compute its estimate as an estimator. For example, in
the analysis of survey data presented in chapter 3, we are interested in estimating the
proportion of Obama supporters in the population of American voters (parameter)
based on a relatively small number of survey respondents (data). We use the sample
proportion of Obama supporters as our estimator. Similarly, in randomized controlled
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trials, the average outcome difference between the treatment and control groups
represents an estimator for the average causal effect, which is our parameter.

How good is our estimate of the parameter? This is a difficult question to answer
because we do not know the true value of the parameter. However, it turns out
that we can characterize how well the estimator will perform over hypothetically
repeated sampling. This section shows how statistical theory can help us investigate
the performance of the estimators we used in the earlier parts of the book.

7.1.1 UNBIASEDNESS AND CONSISTENCY
Consider a survey for which a certain number of respondents are selected from a

population using the simple random sampling procedure. Simple random sampling
implies that each individual in the population is equally likely to be selected into a
sample. As discussed in chapter 3, such random sampling benefits us by producing a
representative sample of a target population (see section 3.4.1).

To give further context to these ideas, recall the preelection polling example in the
2008 US presidential election (see section 4.1.3). In that example, our parameter was
the proportion of voters in the population of American voters that supported Obama.
We used simple random sampling to obtain a representative sample of n voters from
the population. The survey asked whether each of the respondents supported Obama
or not. We used the sample proportion of those who supported Obama as our estimate
of the population proportion of Obama supporters.

To formalize the content of the previous paragraph, let p denote the population
proportion of Obama supporters. We use a random variable X to represent a response
to the question. If voter i supports (does not support) Obama, then we denote this
observation with Xi = 1 (Xi = 0). Since each respondent is sampled independently
from the same population, we can assume that {X1, X2, . . . , Xn} are independently
and identically distributed (i.i.d.) Bernoulli random variables with success probability
p (see section 6.3.2). Our estimator is the sample proportion, Xn =∑n

i=1 Xi/n, which
we use to estimate the unknown parameter p. The specific value of this estimator we
obtain from our sample represents the estimate of p.

How good is this estimate? Ideally, we would like to compute the estimation error,
which is defined as the difference between our estimate and the truth:

estimation error = estimate − truth = Xn − p.

However, the estimation error can never be computed because we do not know p. In
fact, if we know the truth, there is no need to estimate the parameter in the first place!

While we never know the size of the estimation error specific to our sample, it is
sometimes possible to compute the average magnitude of the estimation error. To do
this, we consider the hypothetical scenario of conducting the same preelection poll
infinitely many times in exactly the same manner. This scenario is purely hypothetical
because in reality we obtain only one sample and can never conduct sampling in an
identical manner multiple times. Under this scenario, each hypothetical poll would
draw a different set of n voters from the sample population and yield a different
proportion of sampled voters who express support for Obama. This means that the
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sample proportion, represented by a random variable Xn, would take a different value
for each poll. As a result, the estimation error would also differ from one poll to another
and hence is a random variable.

More formally, the sample proportion can be considered as a random variable
that has its own distribution over the repeated use of simple random sampling. This
distribution is called the sampling distribution of the estimator. In this particular
example, each hypothetical sample is drawn independently from the same population.
Therefore, the sample proportion, Xn, is a binomial random variable, divided by n,
with success probability p and size n where n represents the number of respondents
in a poll (recall from section 6.3.3 that the sum of i.i.d. Bernoulli random variables is a
binomial random variable).

We now compute the average estimation error or bias over this repeated simple
random sampling procedure using the concept of expectation (see section 6.3.5). Under
the binomial model, the success probability equals p. Therefore, we can show that the
bias, or the average estimation error, of the sample mean is zero:

bias = E(estimation error) = E(estimate − truth) = E(Xn) − p = p − p = 0.

This result implies that the sample proportion under simple random sampling
is an unbiased estimator for the population proportion. That is, while the sample
proportion based on a specific sample may deviate from the population proportion,
it gives, on average, the right answer. More precisely, if we were to conduct the
same preelection poll infinitely many times under identical conditions, the average
of the sample proportions of Obama supporters would exactly equal their population
proportion. Thus, unbiasedness refers to the accuracy of the average estimate over
repeated sampling rather than the accuracy of an estimate based on the observed data.

Similar logic applies to nonbinary variables. We can show that the expectation of
the sample mean equals the population average so long as each survey respondent is
randomly sampled from a large population. An example of a nonindependent sampling
procedure is respondent-driven sampling, in which one respondent introduces another
respondent to the interviewer. Using the fact that expectation is a linear operator (see
section 6.3.5), we obtain the following general result for the sample mean:

E(Xn) = 1
n

n∑

i=1

E(Xi ) = E(X). (7.1)

The final equality follows because each of the n observations is randomly sampled from
the same population whose mean is denoted by E(X). Therefore, regardless of the
distribution of a variable, random sampling provides a way to use the sample average
as an unbiased estimator of the population mean. In other words, equation (7.1) shows
that random sampling eliminates bias.

In general, random sampling plays an essential role in obtaining an unbiased
estimate. In the absence of random sampling or other ways to obtain a representative
sample, it is difficult to estimate a population characteristic without bias. For example,
item and unit nonresponse, discussed in section 3.4.2, can yield biased estimates.
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In section 6.4.1, we introduced the law of large numbers, which states that as sample
size increases, the sample mean converges to the population mean. In the current
context, this implies that the estimation error, which is the difference between the
sample mean and the population mean, becomes smaller as the sample size increases.
The estimator is said to be consistent if it converges to the parameter as the sample
size goes to infinity. Thus, the discussion so far implies that the sample mean is a good
estimator for the population mean because it is an unbiased and consistent estimator
of the population mean. That is, the sample mean on average correctly estimates the
population mean, and the estimation error decreases as the sample size increases.

An estimator is said to be unbiased if its expectation equals the parameter. An
estimator is said to be consistent if it converges to the parameter as the sample
size increases. For example, the sample average Xn =∑n

i=1 Xi/n is unbiased and
consistent for the population mean E(X) under simple random sampling:

E(Xn) = E(X) and Xn → E(X).

We next show that the difference-in-means estimator used to analyze randomized
controlled trials (see section 2.4) is unbiased for the average treatment effect. Suppose
that we have a sample of n units for which we conduct a randomized experiment. This
experiment features a single binary treatment Ti which equals 1 if unit i receives the
treatment and 0 if the unit is assigned to the control group. We randomly choose n1
units out of this sample and assign them to the treatment group, and the remaining
n − n1 units belong to the control group. This treatment assignment procedure is
called complete randomization, which fixes a priori the total number of units that
receive the treatment. In contrast, simple randomization randomly assigns treatment
to each unit independently, and so the total number of treated units will vary from one
randomization to another. Thus, under complete randomization, there exists a total
of
( n
n1

)
ways of assigning n1 units to the treatment group and the remaining units to

the control group (see section 6.1.5 for the definition of combinations). Each of these
treatment assignment combinations is equally likely but only one of them is realized.

The first parameter we consider, the sample average treatment effect (SATE), is
defined in equation (2.1) and reproduced here:

SATE = 1
n

n∑

i=1

{Yi (1) − Yi (0)}.

In this equation, Yi (1) and Yi (0) are the potential outcomes under the treatment and
control conditions for unit i , respectively. As discussed in section 2.3, Yi (1) (Yi (0))
represents the outcome that would be observed for unit i if it were assigned to the
treatment (control) condition. Since Yi (1) − Yi (0) represents the treatment effect for
unit i , the SATE is the average of this treatment effect across all units in the sample. But
because only one potential outcome can be observed for each unit, we cannot observe
the treatment effect for any unit, so the SATE is unknown.
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In section 2.4, we learned that randomization of treatment assignment makes
the treatment and control groups identical on average. As a result, we can use the
difference-in-means estimator to estimate average treatment effect. Let’s formalize this
argument here. The difference-in-means estimator ŜATE can be written as

ŜATE = average of the treated − average of the untreated

= 1
n1

n∑

i=1

TiYi − 1
n − n1

n∑

i=1

(1 − Ti )Yi . (7.2)

Recall that n1 represents the number of units in the treatment group and hence n − n1
is the size of the control group. The expression

∑n
i=1 TiYi , for example, gives the sum

of the observed outcome variable across all treated units because the treatment variable
Ti is 1 when unit i is treated and 0 if it belongs to the control group. This means
that TiYi = Yi and (1 − Ti )Yi = 0 when observation i is in the treatment group,
and TiYi = 0 and (1 − Ti )Yi = Yi when it is in the control group.

We now show that the difference-in-means estimator is unbiased for the SATE. As
discussed earlier, in survey sampling, the unbiasedness of an estimator means that over
repeated sampling the average value of the estimator is identical to the unknown true
value of the parameter. In randomized controlled trials, we consider how an estimator
behaves over the repeated randomization of treatment assignment. That is, suppose
that using a sample of the same n units, a researcher conducts a randomized control
trial (infinitely) many times by randomizing the treatment assignment. A given unit
will receive the treatment in some of these trials while in others it will be assigned to the
control group. Each time, a researcher will compute the difference-in-means estimator
after randomizing the treatment assignment and observing the outcome. Throughout
the hypothetical repeated experiments, the potential outcomes remain fixed and only
the treatment assignment changes. Thus, unbiasedness implies that the average value
of the difference-in-means estimator over repeated trials is equal to the true value of
the SATE.

To show the unbiasedness more formally, we can take the expectation of the
difference-in-means estimator with respect to Ti since in this framework the ran-
domized treatment assignment Ti is the only random variable. Since Ti is a Bernoulli
random variable, its expectation equals P (Ti = 1), which is the proportion of subjects
who are treated, or n1/n in this case:

E(ŜATE) = E
(

1
n1

n∑

i=1

TiYi (1) − 1
n − n1

n∑

i=1

(1 − Ti )Yi (0)

)

= 1
n1

n∑

i=1

E(Ti )Yi (1) − 1
n − n1

n∑

i=1

E(1 − Ti )Yi (0)

= 1
n1

n∑

i=1

n1
n
Yi (1) − 1

n − n1

n∑

i=1

(
1 − n1

n

)
Yi (0)

= 1
n

n∑

i=1

{Yi (1) − Yi (0)} = SATE. (7.3)
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The first equality follows because for a treated unit, the potential outcome under the
treatment condition is observed, i.e., Yi = Yi (1), while a control unit reveals the other
potential outcome, i.e., Yi = Yi (0). The second equality holds because the expectation
is a linear operator and is taken with respect to the treatment assignment. That is, the
potential outcomes are treated as fixed constants. The derivation above shows that the
difference-in-means estimator is unbiased for the SATE.

We can combine the advantage of the above random treatment assignment with
that of random sampling. Suppose that we first randomly sample n individuals from a
large population of interest. Within this sample, we randomly assign the treatment to
n1 individuals andmeasure the outcome for each one. This two-step procedure ensures
the experimental results are generalizable to the population because the experiment’s
sample is representative of the population. To see this formally, consider the population
average treatment effect or PATE, which represents the average of the treatment effect
among all individuals in the population. Here, we use the expectation to represent the
population average:

PATE = E(Y(1) − Y(0)). (7.4)

Recall that the sample is representative of the population because of random
sampling. This means that while the SATE is unobservable, its expectation equals the
PATE. Since the difference-in-means estimator is unbiased for the SATE, the estimator
is also unbiased for the PATE. It is also clear from equation (7.3) that the difference-in-
means estimator is consistent for the PATE. This result emerges from applying the
law of large numbers to the sample average of the treatment group and that of the
control group, separately. In sum, the combination of random sampling and random
assignment enables us to make causal inferences about a target population.

In randomized controlled trials, the average outcome difference between the
treatment and control groups is an unbiased estimator of the sample average
treatment effect (SATE). The estimator is also unbiased and consistent for the
population average treatment effect (PATE).

A Monte Carlo simulation can illustrate the idea of unbiasedness. Suppose that the
potential outcome under the control condition Yi (0) is distributed according to the
standard normal distribution in a population (i.e., a normal distribution with zero
mean and unit variance). We further assume that in the population the individual-
level treatment effect follows another normal distribution with bothmean and variance
equal to 1. Formally, we can write this hypothetical data-generating process as

Yi (0) ∼ N (0, 1) and Yi (1) ∼ N (1, 1). (7.5)

The treatment assignment is randomized, where a randomly selected half of the sample
receives the treatment and the other half does not. Finally, we can define the treatment
effect for unit i as τi = Yi (1) − Yi (0). For each unit, we observe the potential outcome
under the realized treatment condition. Under this model, we can analytically compute
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the PATE as

E(τi ) = E(Yi (1)) − E(Yi (0)) = 1 − 0 = 1. (7.6)

In contrast, the value of the SATE depends on which units are sampled.
We now implement this simulation in R. We follow the above equations to generate

one sample of units with potential outcomes from the population. This process requires
the rnorm() function, which randomly draws a sample, of the size specified in the first
argument, from a normal distribution with specified mean and standard deviation. We
next compute the true value of the SATE for that sample. This is, of course, possible
only in this hypothetical simulation exercise. In the real world, we would never observe
both potential outcomes at the same time for any given observation and hence the true
value of the SATE is unknown.

## simulation parameters

n <- 100 # sample size

mu0 <- 0 # mean of Y_i(0)

sd0 <- 1 # standard deviation of Y_i(0)

mu1 <- 1 # mean of Y_i(1)

sd1 <- 1 # standard deviation of Y_i(1)

## generate a sample

Y0 <- rnorm(n, mean = mu0, sd = sd0)

Y1 <- rnorm(n, mean = mu1, sd = sd1)

tau <- Y1 - Y0 # individual treatment effect

## true value of the sample average treatment effect

SATE <- mean(tau)

SATE

## [1] 1.046216

We then use a loop to simulate a large number of hypothetical randomized
controlled trials by randomly assigning the treatment to the units in the sample and
selecting one of the potential outcomes according to the realized treatment condition.
For each replication of the randomized controlled trials, we compute the difference-
in-means estimator and examine its average performance. In order to randomize the
treatment, we use the sample() function to randomly sample one half of elements
from a vector that contains 0s and 1s in equal proportion. We will conduct a Monte
Carlo simulation with a sample size arbitrarily set at 100. The entire procedure,
therefore, is equivalent to randomly assigning 50 observations to the treatment group
and the other 50 to the control group where we observe Yi (1) for the treatment group
and Yi (0) for the control group.

## repeatedly conduct randomized controlled trials

sims <- 5000 # repeat 5000 times, we could do more

diff.means <- rep(NA, sims) # container
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for (i in 1:sims) {

## randomize the treatment by sampling of a vector of 0s and 1s

treat <- sample(c(rep(1, n / 2), rep(0, n / 2)), size = n, replace = FALSE)

## difference-in-means

diff.means[i] <- mean(Y1[treat == 1]) - mean(Y0[treat == 0])

}

## estimation error for SATE

est.error <- diff.means - SATE

summary(est.error)

## Min. 1st Qu. Median Mean 3rd Qu.

## -0.4414000 -0.0891500 -0.0004482 0.0010830 0.0908500

## Max.

## 0.5029000

We observe that the bias, which is the mean of the estimation error, is 0.001, close
to zero. It is not exactly zero as the theory implies because Monte Carlo simulation
adds some noise due to its inherent variability. This deviation from the theoretical
value is calledMonte Carlo error. If we were to conduct this simulation infinitely many
times, we could eliminate the Monte Carlo error. In this simulation, the estimation
error of the difference-in-means estimator ranges from −0.441 to 0.503. Thus, while
the estimator is on average very close to the true value of the SATE, it may be far off in
any given randomized controlled trial.

To consider the bias of estimating the PATE, we must modify the above simulation
procedure. Specifically, we add the step of sampling potential outcomes to the loop.
This simulates the process where researchers sample individuals from a population
and then conduct a randomized experiment. We then repeat this two-step procedure
many times. Such a procedure contrasts with the above simulation setting in which
we conducted a randomized experiment on the same sample. To compute the new
bias, we compare the average value of the difference-in-means estimator over repeated
simulations with the true value of PATE, which equals 1 in the current example. The
R code for this PATE simulation is shown below.

## PATE simulation

PATE <- mu1 - mu0

diff.means <- rep(NA, sims)

for (i in 1:sims) {

## generate a sample for each simulation: this used to be outside loop

Y0 <- rnorm(n, mean = mu0, sd = sd0)

Y1 <- rnorm(n, mean = mu1, sd = sd1)

treat <- sample(c(rep(1, n / 2), rep(0, n / 2)), size = n, replace = FALSE)

diff.means[i] <- mean(Y1[treat == 1]) - mean(Y0[treat == 0])

}

## estimation error for PATE

est.error <- diff.means - PATE
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## unbiased

summary(est.error)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.757900 -0.140900 -0.003669 -0.002793 0.134400 0.650100

The average estimation error is close to zero, reflecting the unbiasedness. The
variability is greater than in the case of the SATE because random sampling adds more
noise.

7.1.2 STANDARD ERROR
We have focused on the mean of the estimation error, but an unbiased estimator

with a large degree of variability is of little use in practice. In the above simulation
example, the difference-in-means estimator was unbiased but its estimation error was
sometimes large. We can plot the sampling distribution of the difference-in-means
estimator. The histogram shows that while the estimator is accurate on average, it varies
significantly from one randomized treatment assignment to another.

hist(diff.means, freq = FALSE,xlab = "Difference-in-means estimator",

main = "Sampling distribution")

abline(v = SATE, col = "blue") # true value of SATE
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How much would an estimator vary over the hypothetically repeated data-
generating process? We have used the standard deviation to characterize the spread
of distribution in earlier parts of the book, and we can do the same here. In the above
simulation example, this amounts to calculating the standard deviation of the sampling
distribution of the difference-in-means estimator.
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sd(diff.means)

## [1] 0.2003772

The result implies that in this example, the difference-in-means estimator is on
average 0.2 points away from its mean. This mean equals the true value of the SATE,
since the difference-in-means estimator is unbiased for the SATE. Accordingly, the
mean of the sampling distribution equals the true value of the SATE, implying that the
standard deviation of the sampling distribution (i.e., the deviation from the mean) in
this case is equal to the root-mean-squared error (RMSE; i.e., the deviation from the
truth) (see section 4.1.3 for the definition of RMSE). In our simulation example, we
can compute the RMSE as follows.

sqrt(mean((diff.means - SATE)^2))

## [1] 0.2062641

The result implies that the estimator is on average 0.206 points away from the true
value of the SATE. The small difference between the standard deviation and the RMSE
reflects the Monte Carlo error in which the sample average differs from its expectation
by a small amount.

However, if an estimator is biased, then the standard deviation of its sampling
distribution will differ from the RMSE. Formally, we can show that the mean-squared
error (MSE), which is the square of the RMSE, equals the sum of the variance
and squared bias. Let θ be a parameter and θ̂ be its estimator. We can derive this
decomposition as follows:

MSE = E{(θ̂ − θ)2}
= E[{(θ̂ − E(θ̂)) + (E(θ̂) − θ)}2]
= E[{θ̂ − E(θ̂)}2] + {E(θ̂) − θ}2

= variance + bias2.

The second equality follows because we simply added and subtracted E(θ̂). The third
equality is based on the fact that the cross-product term obtained by expanding the
square, i.e., 2E{(θ̂ − E(θ̂))(E(θ̂) − θ)}, can be shown to equal zero.1

The decomposition implies that when assessing the accuracy of an estimator, we
care about variance as well as bias. An unbiased estimator can have a greater MSE than
a biased estimator if the variance of the former is sufficiently larger than that of the
latter.

The above discussion suggests that we can characterize the variability of an estimator
by computing the standard deviation of the sampling distribution. Unfortunately, this

1 Specifically, using the rules of expectation, we have E{(θ̂ − E(θ̂))(E(θ̂) − θ)} = E[θ̂E(θ̂) − θ̂ θ − {E(θ̂)}2 +
E(θ̂)θ] = {E(θ̂)}2 − E(θ̂)θ − {E(θ̂)}2 + E(θ̂)θ = 0.
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standard deviation cannot be directly obtained from the data because it is defined
over hypothetical repeated random sampling and/or random treatment assignment.
In the above simulations, we were able to compute it because we generated multiple
data sets from the assumed data-generating process. In reality, we obtain only one
sample and that is from an unknown data-generating process. However, it turns out
that we can estimate the standard deviation of the sampling distribution of an estimator
from the observed data. The resulting estimated standard deviation of the sampling
distribution is called standard error and describes the (estimated) average degree to
which an estimator deviates from its expected value.

To characterize the variability of an estimator, we can use the standard error,
which is an estimated standard deviation of the sampling distribution. One
measure of accuracy is the root-mean-squared error (RMSE), which measures
the average deviation of an estimator θ̂ from the true parameter value θ . The
mean-squared error (MSE) of any estimator is equal to the sum of its variance
and squared bias:

E{(θ̂ − θ)2} = V(θ̂) + {E(θ̂ − θ)}2.

As an example, consider the preelection polling described earlier in this chapter. The
parameter is the population proportion of voters who support Obama, denoted by p.
We have a simple random sample of n voters from this population. We can represent
each response as an independently and identically distributed (i.i.d.) Bernoulli random
variable Xi with success probability p, indicating whether respondent i supports
Obama (Xi = 1) or not (Xi = 0). We use the sample proportion Xn =∑n

i=1 Xi/n as
our estimator. Thus, using the rules of variance (see section 6.3.5), we can calculate the
variance of this estimator as

V(Xn) = 1
n2
V

(
n∑

i=1

Xi

)
= 1

n2

n∑

i=1

V(Xi ) = V(X)
n

= p(1 − p)
n

. (7.7)

In this derivation, the second and third equalities are due to the fact that each
observation is an i.i.d. random variable. The last equality follows from the fact that
the variance of a Bernoulli random variable is p(1 − p). When p equals 0.5 (i.e.,
the population is split into two exact halves), the standard deviation of the sampling
distribution is greatest. Thus, the variance of the estimator is a function of the unknown
parameter p.While we do not know p, we can estimate it from the observed data. Since,
as shown earlier, the sample proportion Xn is an unbiased and consistent estimator of
p, we can use it to construct the following standard error:

standard error of sample proportion =
√

Xn(1 − Xn)
n

. (7.8)

For example, if the sample size is 1000 and 600 individuals said they supported
Obama, then our estimate of Obama’s support rate in the population is 0.6 and the
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standard error is 0.015 ≈ √
0.6(1 − 0.6)/1000. This implies that our estimate deviates

from the true population proportion of Obama supporters by 1.5 percentage points on
average.

In general, the standard error must be derived for each statistic because each statistic
typically has a unique sampling distribution. For example, the standard error formula
given in equation (7.8) applies only to the sample proportion of n i.i.d. Bernoulli
random variables. The derivation in equation (7.7) shows that a more general formula
for the standard error of the sample mean, when X is possibly nonbinary, is given by
the following formula.

Suppose that we have a sample of n independently and identically distributed
random variables, {X1, X2, . . . , Xn}. The standard error of the sample mean
Xn =∑n

i=1 Xi/n is given by

standard error of sample mean =
√
̂
V(Xn) =

√
V̂(X)
n

. (7.9)

When X is a Bernoulli random variable, the formula can be simplified as shown
in equation (7.8) by setting V̂(X) = Xn(1 − Xn).

Thus, we can compute the standard error by estimating the population variance
V(X) with the sample variance

∑n
i=1(Xi − Xn)2/(n − 1), where the denominator is

n− 1 rather than n because the estimation of variance requires the estimation of mean,
resulting in the loss of one degree of freedom (see section 4.3.2).

Finally, we can also obtain the standard error of the difference-in-means estimator
used in a randomized controlled trial. To do this, we note that the variance of the
difference-in-means estimator is the sum of the variances of the sample means for
the treatment and control groups. We estimate these latter two variances. Here, we
can assume statistical independence between the two sample means because they are
based on different groups of observations. Our calculations yield the standard error for
the difference-in-means estimator when one sample mean is compared with another
sample mean.

Suppose that we have a sample of n independently and identically distributed
random variables, {X1, X2, . . . , Xn}. We also have another sample ofm indepen-
dently and identically distributed random variables, {Y1,Y2, . . . ,Ym}. Then, the
standard error of the difference-in-means estimator,

∑n
i=1 Xi/n −∑m

i=1 Yi/m,
is given by

standard error of the difference-in-means =
√
V̂(X)
n

+ V̂(Y)
m

. (7.10)

We now revisit the simulation conducted at the end of section 7.1.1. In this
simulation, the quantity of interest is the PATE rather than the SATE, which is
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based on a particular sample. We add the standard error calculation to each sim-
ulation and obtain 5000 standard errors. These standard errors should on average
estimate the standard deviation of the sampling distribution of the difference-in-means
estimator.

## PATE simulation with standard error

sims <- 5000

diff.means <- se <- rep(NA, sims) # container for standard error added

for (i in 1:sims) {

## generate a sample

Y0 <- rnorm(n, mean = mu0, sd = sd0)

Y1 <- rnorm(n, mean = mu1, sd = sd1)

## randomize the treatment by sampling of a vector of 0s and 1s

treat <- sample(c(rep(1, n / 2), rep(0, n / 2)), size = n, replace = FALSE)

diff.means[i] <- mean(Y1[treat == 1]) - mean(Y0[treat == 0])

## standard error

se[i] <- sqrt(var(Y1[treat == 1]) / (n / 2) + var(Y0[treat == 0]) / (n / 2))

}

## standard deviation of difference-in-means

sd(diff.means)

## [1] 0.1966406

## mean of standard errors

mean(se)

## [1] 0.1992668

As expected from the definition of standard error, the average of the standard errors
is close to the standard deviation of the sampling distribution of the difference-in-
means estimator. In the current case, we can analytically derive the exact standard
deviation of the sampling distribution of this estimator because we know the true
data-generating process. Using the distributions of Y(1) and Y(0) in equation (7.5),
we compute it as

√
V(Y(1))

n1
+ V(Y(0))

n − n1
=
√

1
50

+ 1
50

= 1
5
. (7.11)

We see that our simulation procedure approximates this true value very well.

7.1.3 CONFIDENCE INTERVALS
In order to study the properties of an estimator, we have used the mean and

standard deviation of its sampling distribution. Next, we consider characterizing the
entire sampling distribution rather than its mean and standard deviation. In some
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special cases, this can be done easily. For example, suppose that {X1, X2, . . . , Xn}
are independently and identically distributed according to a normal distribution with
mean μ and variance σ 2. Since the sum of normal random variables follows another
normal distribution, the sampling distribution of the sample mean Xn = ∑n

i=1 Xi/n
is also a normal distribution, with mean E(Xn) = E(X) = μ and variance V(Xn) =
σ 2/n.

While the derivation works out nicely in the case of the normal distribution, it is
unclear how to characterize the sampling distribution of an estimator in other cases.
This is problematic because in practice we do not know the true data-generating
process. Fortunately, in many cases of practical interest, there is a way to approximate
the sampling distribution of an estimator. Specifically, we use the central limit theorem
introduced in section 6.4.2. The theorem implies that the sampling distribution of the
sample mean is approximately normally distributed:

Xn
approx.∼ N

(
E(X),

V(X)
n

)
. (7.12)

We can derive this result from equation (6.41) of section 6.4.2 bymultiplying both sides
by the standard deviation,

√
V(X)/n (this changes the variance from 1 to V(X)/n),

and adding the mean, E(X) (this changes the mean from 0 to E(X)). If the random
variable is binary, then Xn represents the sample proportion, and therefore we have
E(X) = p and V(X) = p(1 − p). For a large enough sample, this result enables us to
characterize the sampling distribution of the sample mean using a normal distribution.
Equation (7.12) is useful because it holds regardless of the distribution of the original
random variable X .

Using this result, we can construct another measure of uncertainty called a confi-
dence interval. Confidence intervals give a range of values that are likely to include
the true value of the parameter. They are also referred to as confidence bands or error
bands. To compute the confidence interval, researchers decide the confidence level, or
the degree to which they would like to be certain that the interval actually contains
the true value. More precisely, over a hypothetically repeated data-generating process,
confidence intervals contain the true value of the parameter with the probability
specified by the confidence level. Many applied researchers choose the 95% confidence
level as a matter of convention but other choices such as 90% and 99% can also
be used. The confidence level is often written as (1 − α) × 100%, where α can
take any value between 0 and 1. For example, α = 0.05 corresponds to the 95%
confidence level.

Formally, the (1 − α) × 100% asymptotic (i.e., large sample) confidence interval,
CI(α), for the sample mean is defined as

CI(α) = [ Xn − zα/2 × standard error, Xn + zα/2 × standard error
]
. (7.13)

In this definition, zα/2 is the critical value, which equals the (1 − α/2) quantile of the
standard normal distribution such that P (Z > α/2) = 1 − P (Z ≤ α/2) = 1 − α/2,
where Z is a standard normal random variable. Thus, the probability that a standard
normal random variable is greater than this critical value is equal to α/2. Figure 7.1
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Figure 7.1. Critical Values Based on the Standard Normal Distribution. The lower and
upper critical values, −zα/2 and zα/2, are shown on the horizontal axis. The area under
the density curve between these critical values (highlighted in blue) equals 1− α. These
critical values are symmetric.

Table 7.1. Commonly Used Critical Values Based on the Normal Distribution for
Confidence Intervals.

α Confidence level Critical value zα/2 R expression

0.01 99% 2.58 qnorm(0.995)

0.05 95% 1.96 qnorm(0.975)

0.1 90% 1.64 qnorm(0.95)

graphically illustrates these critical values, where the area under the density curve
between the lower and upper critical values, highlighted in blue, equals 1 − α.

The critical values that correspond to commonly chosen confidence levels are shown
along with R expressions in table 7.1. Thus, as the confidence level decreases, the
critical value decreases and consequently the width of confidence interval narrows.
This is because the width of the confidence interval is 2 × standard error × zα/2 (see
equation (7.13)). The trend makes sense because for the same observed data, a shorter
confidence interval gives us less confidence that the interval contains the true value.
As the table shows, the confidence level corresponds to the argument of the qnorm()
function. Mathematically, this function computes the inverse of the CDF of a standard
normal random variable X . To use the qnorm() function, we input a probability p,
and the function returns the quantile q such that p = P (X ≤ q).

Going back to the survey sampling example, if 600 out of 1000 respondents support
Obama, then the estimate of the population proportion of voters who support Obama,
or point estimate, is Xn = 0.6 with a standard error of 0.02 = √

0.6 × (1 − 0.6)/1000.
Thus, the 99%, 95%, and 90% confidence intervals can be computed as follows.
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n <- 1000 # sample size

x.bar <- 0.6 # point estimate

s.e. <- sqrt(x.bar * (1 - x.bar) / n) # standard error

## 99% confidence intervals

c(x.bar - qnorm(0.995) * s.e., x.bar + qnorm(0.995) * s.e.)

## [1] 0.5600954 0.6399046

## 95% confidence intervals

c(x.bar - qnorm(0.975) * s.e., x.bar + qnorm(0.975) * s.e.)

## [1] 0.5696364 0.6303636

## 90% confidence intervals

c(x.bar - qnorm(0.95) * s.e., x.bar + qnorm(0.95) * s.e.)

## [1] 0.574518 0.625482

We observe that a greater confidence level yields a wider confidence interval.
How should we interpret confidence intervals? It is tempting to think, for example,

that the probability that the particular 95% confidence interval computed based on
the observed data contains the true value of the parameter is 0.95. However, this in-
terpretation is incorrect. The reason is that the true value of the parameter is unknown
and fixed, and hence the probability that a particular confidence interval contains this
value is either 1 (when it actually contains it) or 0 (when it does not). We should note
that since confidence intervals are a function of observed data, they are random and
vary from one (hypothetical) random sample to another. The correct interpretation of
confidence intervals is, therefore, that 95% confidence intervals contain the true value
of the parameter 95% of the time during a hypothetically repeated data-generating
process. In other words, if we had an infinite number of random samples, then 95%
of them yield a 95% confidence interval that contains the truth. The probability that a
(random) confidence interval includes the true value is called the coverage probability
(or coverage rate). Confidence intervals are valid when they have a coverage probability
equal to the nominal value (e.g., 95% in the current example).

We now explain why the confidence interval given in equation (7.13) has a proper
coverage rate. Consider the probability that a (1 − α/2) × 100% confidence interval
contains the true parameter value E(X) (or p when X is a Bernoulli random variable),
i.e., the probability that the true parameter is between the lower and upper confidence
limits. This probability does not change even if we subtract the sample mean Xn from
each term and divide it by its standard error:

P
(
Xn − zα/2 × standard error ≤ E(X) ≤ Xn + zα/2 × standard error

)

= P
(

−zα/2 ≤ E(X) − Xn

standard error
≤ zα/2

)

= P
(

−zα/2 ≤ Xn − E(X)
standard error

≤ zα/2

)

= 1 − α. (7.14)
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The middle probability term, {E(X)− Xn}/standard error, equals the negative z-score
of the sample mean, which has the same sampling distribution as the z-score because
of symmetry. The central limit theorem implies that the z-score of the sample mean
follows the standard normal distribution when the sample size is sufficiently large:

Xn − E(X)√
V(X)/n

≈ Xn − E(X)
standard error

∼ N (0, 1). (7.15)

Therefore, the probability in equation (7.14) equals the blue area of figure 7.1.
We now summarize the standard procedure for constructing asymptotic confidence

intervals based on the central limit theorem. The procedure applies to any estimator
so long as its asymptotic sampling distribution can be approximated by the normal
distribution. Such a normal approximation holds for many cases of interest including
almost all the examples in this book.

The confidence interval of an estimate θ̂ can be obtained by using the following
procedure:

1. Choose the desired level of confidence (1 − α) × 100% by specifying a
value of α between 0 and 1: the most common choice is α = 0.05, which
gives a 95% confidence level.

2. Derive the sampling distribution of the estimator by computing its
mean and variance: in the case of the sample mean, this is given by
equation (7.12).

3. Compute the standard error based on this sampling distribution.
4. Compute the critical value zα/2 as the (1 − α) × 100 percentile value of

the standard normal distribution: see table 7.1.
5. Compute the lower and upper confidence limits as

θ̂ − zα/2 × standard error and θ̂ + zα/2 × standard error,
respectively.

The resulting confidence interval covers the true parameter value θ over a
hypothetically repeated data-generating process (1 − α) × 100% of the time.

Several applications of this procedure will be given throughout this section. Here, we
conduct Monte Carlo simulations to further illustrate the idea of confidence intervals.
First we revisit the PATE simulation shown in section 7.1.2. Given the estimates and
standard errors we computed, we can obtain the 90% and 95% confidence intervals for
each of the 5000 simulations.

## empty container matrices for 2 sets of confidence intervals

ci95 <- ci90 <- matrix(NA, ncol = 2, nrow = sims)

## 95% confidence intervals

ci95[, 1] <- diff.means - qnorm(0.975) * se # lower limit

ci95[, 2] <- diff.means + qnorm(0.975) * se # upper limit
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## 90% confidence intervals

ci90[, 1] <- diff.means - qnorm(0.95) * se # lower limit

ci90[, 2] <- diff.means + qnorm(0.95) * se # upper limit

If these confidence intervals are valid, then they should contain the true value of
the PATE, which is equal to 1 in this simulation, approximately 95% and 90% of time,
respectively. That is exactly what we find below.

## coverage rate for 95% confidence interval

mean(ci95[, 1] <= 1 & ci95[, 2] >= 1)

## [1] 0.9482

## coverage rate for 90% confidence interval

mean(ci90[, 1] <= 1 & ci90[, 2] >= 1)

## [1] 0.9038

As another illustration, we use the polling example described earlier. Again, over
repeated random sampling, 95% of the 95% confidence intervals should contain
the true parameter value. As the sample size increases, we should observe that the
approximation improves with the coverage probability approaching its nominal rate.
In the code chunk below, we use a double loop. The outer loop is defined for
different sample sizes and the inner loop conducts a simulation and examines, for each
simulation, whether the confidence interval contains the truth.

p <- 0.6 # true parameter value

n <- c(10, 100, 1000) # 3 sample sizes to be examined

alpha <- 0.05

sims <- 5000 # number of simulations

results <- rep(NA, length(n)) # a container for results

## loop for different sample sizes

for (i in 1:length(n)) {

ci.results <- rep(NA, sims) # a container for whether CI includes truth

## loop for repeated hypothetical survey sampling

for (j in 1:sims) {

data <- rbinom(n[i], size = 1, prob = p) # simple random sampling

x.bar <- mean(data) # sample proportion as an estimate

s.e. <- sqrt(x.bar * (1 - x.bar) / n[i]) # standard errors

ci.lower <- x.bar - qnorm(1 - alpha / 2) * s.e.

ci.upper <- x.bar + qnorm(1 - alpha / 2) * s.e.

ci.results[j] <- (p >= ci.lower) & (p <= ci.upper)

}

## proportion of CIs that contain the true value

results[i] <- mean(ci.results)

}
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results

## [1] 0.8980 0.9552 0.9486

As the sample size increases, the proportion of 95% confidence intervals that contain
the true population proportion approaches their nominal value, 95%.

7.1.4 MARGIN OF ERROR AND SAMPLE SIZE CALCULATION IN POLLS
In the world of polling, the phrasemargin of error typically refers to the half width of

95% confidence intervals. That is, when we say that Obama’s approval rate is 60% with
margin of error plus or minus 3 percentage points, we mean that the 95% confidence
interval is [57, 63]. In general, we can define the margin of error in polling as

margin of error = ±z0.025 × standard error ≈ ±1.96 ×
√

Xn(1 − Xn)
n

. (7.16)

Now consider the case where the standard deviation of the sampling distribution,
i.e.,

√
p(1 − p), is the largest. This happens when exactly half of voters support

Obama and the other do not, i.e., p = 0.5. Then, assuming that we have a large
enough sample to ensure X ≈ p, the margin of error becomes approximately
±1/

√
n ≈ ±1.96 × √

0.5 × (1 − 0.5)/n. From this result, we can derive the rule of
thumb commonly applied when researchers are deciding the number of respondents
to interview. This rule of thumb states that if you compute the reciprocal of the
squared margin of error, it gives the sample size necessary to achieve the specified
level of precision, i.e., n ≈ 1/margin of error2. For example, if we want to obtain
an estimate with margin of error plus or minus 3 percentage points, then we need
approximately 1/0.032 ≈1111 observations. More generally, by rearranging the terms
in equation (7.16), the approximate relationship between the margin of error and
sample size can be written as follows.

The margin of error of the estimated proportion in polling Xn refers to the
half width of the 95% confidence interval or z0.025 × standard error = 1.96 ×√

Xn(1 − Xn)/n. The approximate relationship between sample size n and mar-
gin of error is

n ≈ 1.962 p(1 − p)
margin of error2

, (7.17)

where p is the population proportion. The formula can be used to determine the
sample size necessary for conducting a survey.

We can use this formula to determine the sample size for a survey given the
desired level of precision, or margin of error, and our prior information about the
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population proportion p. This calculation, conducted before fielding a survey, is called
the sample size calculation and represents an important planning component of survey
sampling. Below, we plot the sample size as a function of the population proportion
(the horizontal axis) and the margin of error (different line types). In the plot below,
we observe that a large sample size is required to obtain a margin of error of plus or
minus 1 percentage point, particularly when the population proportion is close to 0.5.
In contrast, a moderate sample size is sufficient if the desired margin of error is plus or
minus 3 percentage points or more.

MoE <- c(0.01, 0.03, 0.05) # the desired margin of error

p <- seq(from = 0.01, to = 0.99, by = 0.01)

n <- 1.96^2 * p * (1 - p) / MoE[1]^2

plot(p, n, ylim = c(-1000, 11000), xlab = "Population proportion",

ylab = "Sample size", type = "l")

lines(p, 1.96^2 * p * (1 - p) / MoE[2]^2, lty = "dashed")

lines(p, 1.96^2 * p * (1 - p) / MoE[3]^2, lty = "dotted")

text(0.5, 10000, "margin of error = 0.01")

text(0.5, 1800, "margin of error = 0.03")

text(0.5, -200, "margin of error = 0.05")
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Finally, we revisit the statewide preelection polls analyzed in chapter 4. We analyze
the 2008 presidential election polling data set polls08.csv, whose variable names
and descriptions are given in table 4.2. In section 4.1.3, we computed our estimated
margin of victory for Obama within each state and plotted it against his margin of
victory on Election Day. Here, we conduct a similar analysis but include the 95%
confidence interval for each estimate and plot it as a vertical line. Note that the official
election results are contained in the data file pres08.csv, the variable names and
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descriptions of which are shown in table 4.1. Our code modifies the code chunk that
appeared in section 4.1.3 by focusing on Obama’s support share and adding the 95%
confidence intervals. We assume that the sample size for each poll is 1000.

## election and polling results, by state

pres08 <- read.csv("pres08.csv")

polls08 <- read.csv("polls08.csv")

## convert to a Date object

polls08$middate <- as.Date(polls08$middate)

## number of days to Election Day

polls08$DaysToElection <- as.Date("2008-11-04") - polls08$middate

## create a matrix place holder

poll.pred <- matrix(NA, nrow = 51, ncol = 3)

## state names which the loop will iterate through

st.names <- unique(pres08$state)

## add labels for easy interpretation later on

row.names(poll.pred) <- as.character(st.names)

## loop across 50 states plus DC

for (i in 1:51){

## subset the ith state

state.data <- subset(polls08, subset = (state == st.names[i]))

## subset the latest polls within the state

latest <- state.data$DaysToElection == min(state.data$DaysToElection)

## compute the mean of latest polls and store it

poll.pred[i, 1] <- mean(state.data$Obama[latest]) / 100

}

## upper and lower confidence limits

n <- 1000 # sample size

alpha <- 0.05

s.e. <- sqrt(poll.pred[, 1] * (1 - poll.pred[, 1]) / n) # standard error

poll.pred[, 2] <- poll.pred[, 1] - qnorm(1 - alpha / 2) * s.e.

poll.pred[, 3] <- poll.pred[, 1] + qnorm(1 - alpha / 2) * s.e.

We now compare the polling prediction of Obama’s support share (the vertical axis)
against Obama’s vote share on Election Day (the horizontal axis). The idea is that the
latter represents the true parameter value within each state. If our 95% confidence
intervals are appropriate, 95% of them, which is about 48 states, should contain the
actual Election Day result. We use the lines() function repeatedly to draw the
confidence interval for each state, with the confidence limits marking each end.

alpha <- 0.05

plot(pres08$Obama / 100, poll.pred[, 1], xlim = c(0, 1), ylim = c(0, 1),

xlab = "Obama’s vote share", ylab = "Poll prediction")

abline(0, 1)
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## adding 95% confidence intervals for each state

for (i in 1:51) {

lines(rep(pres08$Obama[i] / 100, 2), c(poll.pred[i, 2], poll.pred[i, 3]))

}

## proportion of confidence intervals that contain the Election Day outcome

mean((poll.pred[, 2] <= pres08$Obama / 100) &

(poll.pred[, 3] >= pres08$Obama / 100))

## [1] 0.5882353
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The result suggests that the coverage rate is 58.8%, far below the nominal level. One
possible reason for under-coverage is that the poll estimates of Obama’s support are
biased. If the confidence intervals are not centered around the true parameter value,
the coverage rate will be low even if their widths are appropriate. Such bias, if it exists,
can affect the confidence intervals by systematically shifting them in one direction and
altering the standard error. To investigate this possibility, we first compute the bias and
then correct our point estimates by subtracting this bias from the original estimates.

## bias

bias <- mean(poll.pred[, 1] - pres08$Obama / 100)

bias

## [1] -0.02679739

## bias corrected estimate

poll.bias <- poll.pred[, 1] - bias
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Using this bias-corrected estimate, we can retrospectively compute the standard
error and the 95% “bias-corrected” confidence intervals. This retrospective procedure
differs from prospective bias correction, which estimates the magnitude of bias without
observing the true parameter values (i.e., the Election Day result in this application).
Finally, we examine the coverage rate of the bias-corrected confidence intervals.

## bias-corrected standard error

s.e.bias <- sqrt(poll.bias * (1 - poll.bias) / n)

## bias-corrected 95% confidence interval

ci.bias.lower <- poll.bias - qnorm(1 - alpha / 2) * s.e.bias

ci.bias.upper <- poll.bias + qnorm(1 - alpha / 2) * s.e.bias

## proportion of bias-corrected CIs that contain the Election Day outcome

mean((ci.bias.lower <= pres08$Obama / 100) &

(ci.bias.upper >= pres08$Obama / 100))

## [1] 0.7647059

The bias correction dramatically improves the coverage rate by almost 20 percentage
points. Nevertheless, it is still far from the nominal coverage rate of 95%.

Although the standard errors and confidence intervals represent useful measures of
uncertainty, they account only for uncertainty due to random sampling. In practice,
other sources of uncertainty remain unaccounted for in the standard error calculation.
For example, there may exist systematic bias due to unit nonresponse. While beyond
the scope of this book, statistical methods have been developed to adjust such bias and
underestimation of uncertainty.

7.1.5 ANALYSIS OF RANDOMIZED CONTROLLED TRIALS
We next consider the quantification of uncertainty with respect to estimates of

causal effects. We revisit the analysis of data from the STAR (Student–Teacher
Achievement Ratio) project introduced in section 2.8.1. The STAR project conducted
a randomized controlled trial in the 1980s. In the experiment, students were randomly
assigned to a small class, regular class, or regular class with an aid. We are interested in
knowing whether small class size improves students’ test performance. The data in the
file STAR.csv have the variable names and descriptions given in table 2.6.We begin by
creating a histogram for our outcome variable, the fourth-grade standardized reading
test score, separately for students assigned to a regular class and those in a small class.
We estimate the average score for each group (after deleting observations with missing
values) and add it to each graph as a blue line.

## read in data

STAR <- read.csv("STAR.csv", head = TRUE)

hist(STAR$g4reading[STAR$classtype == 1], freq = FALSE, xlim = c(500, 900),

ylim = c(0, 0.01), main = "Small class",

xlab = "Fourth-grade reading test score")

abline(v = mean(STAR$g4reading[STAR$classtype == 1], na.rm = TRUE),

col = "blue")
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hist(STAR$g4reading[STAR$classtype == 2], freq = FALSE, xlim = c(500, 900),

ylim = c(0, 0.01), main = "Regular class",

xlab = "Fourth-grade reading test score")

abline(v = mean(STAR$g4reading[STAR$classtype == 2], na.rm = TRUE),

col = "blue")
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Wefirst compute the estimated average test score for each treatment group by taking
its sample average. These estimates of the average test scores are shown in the above
plots using blue lines. We also compute the standard error for each estimator. Since
the standard error is the estimated standard deviation of the sampling distribution, it

is given by
√
̂
V(Xn) =

√
σ̂ 2/n in this case. We can use the sample variance as our

estimate of the variance parameter σ 2. When computing the sample size, we need to be
careful not to count observations with missing reading scores.

## estimate and standard error for small class

n.small <-

sum(STAR$classtype == 1 & !is.na(STAR$g4reading))

est.small <- mean(STAR$g4reading[STAR$classtype == 1], na.rm = TRUE)

se.small <- sd(STAR$g4reading[STAR$classtype == 1], na.rm = TRUE) /

sqrt(n.small)

est.small

## [1] 723.3912

se.small

## [1] 1.913012

## estimate and standard error for regular class

n.regular <- sum(STAR$classtype == 2 & !is.na(STAR$classtype) &

!is.na(STAR$g4reading))
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est.regular <- mean(STAR$g4reading[STAR$classtype == 2], na.rm = TRUE)

se.regular <- sd(STAR$g4reading[STAR$classtype == 2], na.rm = TRUE) /

sqrt(n.regular)

est.regular

## [1] 719.89

se.regular

## [1] 1.83885

How should one construct a confidence interval for each estimate? As before, we
can rely on the central limit theorem and obtain an approximate confidence interval
for each estimate.

alpha <- 0.05

## 95% confidence intervals for small class

ci.small <- c(est.small - qnorm(1 - alpha / 2) * se.small,

est.small + qnorm(1 - alpha / 2) * se.small)

ci.small

## [1] 719.6417 727.1406

## 95% confidence intervals for regular class

ci.regular <- c(est.regular - qnorm(1 - alpha / 2) * se.regular,

est.regular + qnorm(1 - alpha / 2) * se.regular)

ci.regular

## [1] 716.2859 723.4940

These confidence intervals overlap with each other. Does this mean that the
estimated average difference between the two groups, or the estimated PATE of small
class size, is not statistically significant? An estimated effect is statistically significant
if it reflects true patterns in the population, rather than arising from mere chance. To
find out the answer to this question, it would be best to compute the confidence interval
directly for the estimated average difference. Recall the standard error of the difference-
in-means estimator given in equation (7.10). Using this standard error formula, we can
compute the 95% confidence interval for the estimated PATE.

## difference-in-means estimator

ate.est <- est.small - est.regular

ate.est

## [1] 3.501232

## standard error and 95% confidence interval

ate.se <- sqrt(se.small^2 + se.regular^2)
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ate.se

## [1] 2.653485

ate.ci <- c(ate.est - qnorm(1 - alpha / 2) * ate.se,

ate.est + qnorm(1 - alpha / 2) * ate.se)

ate.ci

## [1] -1.699503 8.701968

We find that the average treatment effect of small class size on the fourth-grade
reading score is estimated to be 3.50 with a standard error of 2.65. The 95% confidence
interval is [−1.70, 8.70], containing zero. This finding suggests that although the
estimated average treatment effect is positive, it features a considerable degree of
uncertainty.

7.1.6 ANALYSIS BASED ON STUDENT’S t-DISTRIBUTION
The calculation of confidence intervals has so far relied upon the central limit

theorem. This is why we used the quantiles of the standard normal distribution when
computing confidence intervals, assuming that we have a large enough sample to
invoke the central limit theorem. This assumption is useful because the central limit
theorem applies to a wide variety of distributions. Given that we often do not know the
distribution of an outcome variable, the procedure of constructing confidence intervals
described earlier is quite general.

Here, we consider an alternative assumption, that the outcome variable (rather
than its sample mean) is generated from a normal distribution. As an illustration,
we apply this assumption to the STAR experiment just analyzed in section 7.1.5. We
assume that the test scores for each group follow a normal distribution, with possibly
different means and variances. While the histograms shown earlier suggest that the
distribution of test scores for each group may not satisfy this assumption, the inference
resulting from this assumption provesmore conservative than the asymptotic inference
we have been using based on the central limit theorem. Because many researchers
prefer conservative inferences, they often use confidence intervals under this normally
distributed outcome assumption even when the assumption is not justifiable.

When a random variable is normally distributed, we can obtain an exact confidence
interval for the sample mean using Student’s t-distribution, also simply called the
t-distribution. The name of the distribution originates from the fact that its British
creator William Gossett, a researcher at beer producer Guinness, published the
paper introducing it under the pseudonym “Student.” We use tν to represent the
t-distribution with ν degrees of freedom. Specifically, the z-score of the sample mean is
called the t-statistic and is distributed according to the t-distribution with n−1 degrees
of freedom. Roughly, the degrees of freedom represent the number of independent
observations used for estimation minus the number of parameters to be estimated (see
section 4.3.2). The current case involves one parameter to estimate: we use the standard
error to estimate the standard deviation of the sampling distribution. This result holds
exactly so we do not resort to asymptotic approximation.
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Suppose that {X1, X2, . . . , Xn} are n independently and identically distributed
random variables from a normal distribution with mean μ and variance σ 2.
Then, the z-score of the sample mean Xn, which is called the t-statistic, follows
Student’s t-distribution with n − 1 degrees of freedom:

t-statistic of sample mean = Xn − mean

standard error
= Xn − μ

σ̂
∼ tn−1.

The t-distribution is quite similar to the standard normal distribution but has
heavier tails. In the left-hand plot below, we graphically compare the density function
of the t-distribution with 3 different degrees of freedom (dashed lines) to the standard
normal distribution. The t-distribution with ν degrees of freedom has mean zero. The
variance is given by ν/(ν − 2) when the number of degrees of freedom is greater than
2. It turns out that the variance does not exist when ν is less than or equal to 2.
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Like the standard normal distribution (black solid line), the t-distribution density
function is symmetric and centered around zero. However, the t-distribution has more
mass in the tail areas than the standard normal distribution, especially when the degrees
of freedom are small. As the degrees of freedom increase, however, the t-distribution
approaches the standard normal distribution. This makes sense because according to
the central limit theorem, the z-score of the sample mean follows the standard normal
distribution regardless of the distribution of the original random variable. Therefore,
the standard normal distribution should approximate the sampling distribution of the
t-statistic well for a sufficiently large sample size.

The construction of the confidence intervals under this setting is the same as for
the sample mean, except that we use the t-distribution with n − 1 degrees of freedom
when computing the critical values. That is, the (1− α)× 100% confidence interval for
the sample mean is given by equation (7.13) except that zα/2 now equals the 1 − α/2
quantile of the t-distribution. This results in a wider, and hence more conservative,
confidence interval because the critical values based on the t-distribution are greater
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than those based on the standard normal distribution (see the quantile–quantile plot or
Q–Q plot in the right-hand panel above). For example, when α = 0.05 and n = 50, the
critical value based on the t-distribution is equal to 2.01, which is slightly greater than
the one based on the standard normal distribution, 1.96.

We now go back to the analysis of the STAR data and compute the 95% confidence
intervals for the estimated average reading score under each treatment condition. To
compute critical values for t-statistics in R, we can use the qt() function with the df
argument specifying the degrees of freedom, rather than the qnorm() function we
used for the normal approximation.

## 95% CI for small class

c(est.small - qt(0.975, df = n.small - 1) * se.small,

est.small + qt(0.975, df = n.small - 1) * se.small)

## [1] 719.6355 727.1469

## 95% CI based on the central limit theorem

ci.small

## [1] 719.6417 727.1406

## 95% CI for regular class

c(est.regular - qt(0.975, df = n.regular - 1) * se.regular,

est.regular + qt(0.975, df = n.regular - 1) * se.regular)

## [1] 716.2806 723.4993

## 95% CI based on the central limit theorem

ci.regular

## [1] 716.2859 723.4940

These confidence intervals are slightly wider than those obtained using the central
limit theorem. The differences are tiny because the sample size is relatively large.
To compute the confidence interval for the difference-in-means estimator, suppose
that {X1, X2, . . . , Xn} are n independently and identically distributed normal random
variables with mean μX and variance σ 2

X , and {Y1,Y2, . . . ,Ym} are m i.i.d. normal
random variables with mean μY and variance σ 2

Y . Then, the t-statistic is given by

t-statistic of difference-in-means = (Xn − Ym) − (μX − μY )√
σ̂ 2
X/n + σ̂ 2

Y/m
. (7.18)

Although this t-statistic also follows Student’s t-distribution, the degrees of freedom
calculation is complicated. The details of this calculation are beyond the scope of this
book, but we can construct the confidence interval based on Student’s t-distribution.
We employ the t.test() function, which we will also use later to conduct a
hypothesis test. For now, we focus on the part of the output that shows the confidence
interval.
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t.ci <- t.test(STAR$g4reading[STAR$classtype == 1],

STAR$g4reading[STAR$classtype == 2])

t.ci

##

## Welch Two Sample t-test

##

## data:STAR$g4reading[STAR$classtype==1] and STAR$g4reading[STAR$classtype == 2]

## t = 1.3195, df = 1541.2, p-value = 0.1872

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.703591 8.706055

## sample estimates:

## mean of x mean of y

## 723.3912 719.8900

The degrees of freedom are calculated as 1541.2. Because the size of our sample is
not too small, the resulting confidence interval is only slightly wider than the one based
on the normal approximation reported above.

7.2 Hypothesis Testing

In section 6.1.5, we presented an analysis of Arnold Schwarzenegger’s 2009 veto
message to the California legislature, and showed that the particular order of words
in his message was highly unlikely to be a consequence of coincidence alone. This
was done by examining the likelihood of observing the event that actually happened
under a particular probability model. In section 6.6.3, a similar method was used to
detect election fraud in Russia, where we generated hypothetical election results and
compared them with the actual election outcome to investigate whether the latter was
anomalous. In this section, we formalize this logic and introduce a general principle
of statistical hypothesis testing that underlies such analysis. This principle enables us
to determine whether or not the occurrence of an observed event is likely to be due to
chance alone.

7.2.1 TEA-TASTING EXPERIMENT
In his classic book The Design of Experiments, Ronald Fisher introduced the idea

of a statistical hypothesis test. During an afternoon tea party at the University of
Cambridge, a lady declared that tea tastes different depending on whether the tea is
poured into the milk or the milk is poured into the tea. Fisher examined this claim
by using a randomized experiment in which 8 identical cups were prepared and 4 were
randomly selected for milk to be poured into the tea. For the remaining 4 cups, themilk
was poured first. The lady was then asked to identify, for each cup, whether the tea or
the milk had been poured first. To everyone’s surprise, the lady correctly classified all
the cups. Did this happen by luck or did the lady actually possess the ability to detect
the order, as she claimed?
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Table 7.2. Tea-Tasting Experiment.

Cups Lady’s guess Actual order Scenarios · · ·

1 M M T T T
2 T T T T M
3 T T T T M
4 M M T M M
5 M M M M T
6 T T M M T
7 T T M T M
8 M M M M T

Number of correct guesses 8 4 6 2 · · ·

Note: “M” and “T” represent two scenarios, “milk is poured first” and “tea is poured first,” respectively.
Under the hypothesis that the lady has no ability to distinguish the order in which milk and tea were
poured into each cup, her guess will be identical regardless of which cups had milk/tea poured first.

To analyze this randomized experiment, we draw on potential outcomes as ex-
plained in chapter 2. For each of the 8 cups, we consider two potential guesses
given by the lady, which may or may not depend on whether milk or tea was
actually poured into the cup first. If we hypothesize that the lady had no ability to
distinguish whether milk or tea was poured into the cup first, then her guess should
not depend on the actual order in which milk and tea were poured. In other words,
under this hypothesis, the two potential outcomes should be identical. Recall the
fundamental problem of causal inference, which states that only one of the two potential
outcomes can be observed. Here, the hypothesis that the lady possesses no ability to
distinguish the two types of tea with milk reveals her responses under counterfactual
scenarios.

Fisher’s analysis proceeds under this hypothesis and involves computing the
number of correctly guessed cups under every possible assignment combination. As
discussed in section 7.1.1, this experiment is an example of complete randomization,
where the number of observations assigned to each condition is fixed a priori. In
contrast, simple randomizationwould randomize each cup independently without such
a constraint. Table 7.2 illustrates Fisher’s method. The second column of the table
shows the lady’s actual guess for each cup, which is identical to the true order (third
column) in whichmilk and tea were poured into the cup. In the remaining columns, we
show three arbitrarily selected combinations of assigning 4 cups to “milk first” and the
other 4 to “tea first.” Although these counterfactual assignment combinations did not
occur in the actual experiment, we can compute the number of correctly guessed cups
under each scenario with the aforementioned hypothesis that the lady lacks the ability
to distinguish between the two types of tea with milk and thus different assignments do
not affect the lady’s guess. This is done by simply comparing the lady’s guess (second
column), which is assumed to remain unchanged, with each counterfactual assignment.
For example, if the cups had received the assignments in the fifth column of the table,
then the number of correctly classified cups would have been 6.
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Figure 7.2. Sampling Distribution for the Tea-Tasting Experiment. The bar plot shows the
distribution of the number of correctly classified cups.

Under this setup, the key question concerns the likelihood that the lady would have
classified all 8 cups correctly if she had not had the ability to distinguish the taste
difference. Since each assignment combination is equally likely in this randomized
experiment, we can compute the probability of perfect classification by counting the
number of ways in which we assign 4 cups to the “milk first” condition and the
remaining 4 cups to the “tea first” condition (see equation (6.1)). The number of
combinations is given by 8C4 = 8!/(4! × (8 − 4)!) = 70 because 4 cups out of 8
were selected to have tea poured in first. Thus, under the assumption that the lady has
no ability to distinguish the taste difference, the probability that she guesses all cups
correctly is 1/70, or approximately 0.01, which is quite small. We conclude from this
analysis that the lady’s perfect classification is unlikely to have occurred due to chance
alone.

Moreover, as shown in figure 7.2, we can characterize the exact distribution of the
number of correctly specified cups over all possible assignment combinations. How is
this distribution derived? First, there is only one assignment combination, presented
as the actual order in the third column of the table, that makes the lady’s guesses a set
of perfect classifications. Similarly, there is one assignment combination that makes all
of her guesses incorrect. In this experiment, the number of ways in which the lady
guesses 2 cups correctly is equivalent to the product of two things: the number of
ways in which the lady correctly classifies one of the 4 “milk first” conditions and the
number of ways in which the lady incorrectly classifies 3 of them. We can compute
this as 4C1 × 4C3 = 16. The same calculation applies to the number of assignment
combinations that leads to 6 correctly classified cups. Similarly, we can compute the
number of combinations that lead to 4 correctly classified cups, which is given by
4C2 × 4C2 = 36. Finally, because by design the number of cups assigned to each
condition is equal, there is no instance where the number of correctly classified cups
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is odd. Below, we compute the probability of each event by using the choose()
function, which enables us to compute combinations.

## truth: enumerate the number of assignment combinations

true <- c(choose(4, 0) * choose(4, 4),

choose(4, 1) * choose(4, 3),

choose(4, 2) * choose(4, 2),

choose(4, 3) * choose(4, 1),

choose(4, 4) * choose(4, 0))

true

## [1] 1 16 36 16 1

## compute probability: divide it by the total number of events

true <- true / sum(true)

## number of correctly classified cups as labels

names(true) <- c(0, 2, 4, 6, 8)

true

## 0 2 4 6 8

## 0.01428571 0.22857143 0.51428571 0.22857143 0.01428571

As done in chapter 6, we can also approximate this distribution using Monte
Carlo simulations. We generate 1000 hypothetical experiments to approximate the
sampling distribution of the number of correctly classified cups. To do this, we use the
sample() function and sample without replacement 8 elements from a vector of 4 M’s
and 4 T’s. This is equivalent to randomly assigning 4 cups to the “milk first” condition
and the remaining 4 to the “tea first” condition. We then compute the fraction of trials
that yield a certain number of correctly specified cups. The following code chunk shows
this simulation approach. We find that the differences between the simulation results
and the analytical answers are quite small.

## simulations

sims <- 1000

## lady’s guess: M stands for “milk first,” T stands for “tea first”

guess <- c("M", "T", "T", "M", "M", "T", "T", "M")

correct <- rep(NA, sims) # place holder for number of correct guesses

for (i in 1:sims) {

## randomize which cups get milk/tea first

cups <- sample(c(rep("T", 4), rep("M", 4)), replace = FALSE)

correct[i] <- sum(guess == cups) # number of correct guesses

}

## estimated probability for each number of correct guesses

prop.table(table(correct))

## correct

## 0 2 4 6 8

## 0.015 0.227 0.500 0.248 0.010
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## comparison with analytical answers; the differences are small

prop.table(table(correct)) - true

## correct

## 0 2 4 6

## 0.0007142857 -0.0015714286 -0.0142857143 0.0194285714

## 8

## -0.0042857143

The major advantage of Fisher’s analysis is that the inference is solely based on
the randomization of treatment assignment. Such inference is called randomization
inference. Methods based on randomization inference typically do not require a
strong assumption about the data-generating process because researchers control
the randomization of treatment assignment, which alone serves as the basis of
inference.

7.2.2 THE GENERAL FRAMEWORK
The tea-tasting experiment described above illustrates a general framework called

statistical hypothesis testing. Statistical hypothesis testing is based on probabilistic
proof by contradiction. Proof by contradiction is a general strategy of mathematical
proof in which one demonstrates that assuming the contrary of what we would like
to prove leads to a logical contradiction. For example, consider the proposition that
there is no smallest positive rational number. To prove this proposition, we assume
that the conclusion is false. That is, suppose that there exists a smallest positive rational
number a. Recall that any rational number can be expressed as the fraction of two
integers: a = p/q > 0 where both the numerator p and the nonzero denominator q
are positive integers. But, for example, b = a/2 is smaller than a, and yet b is also a
rational number. This contradicts the hypothesis that a is the smallest positive rational
number.

In the case of statistical hypothesis testing, we can never reject a hypothesis with
100% certainty. Consequently, we use a probabilistic version of proof by contradiction.
We begin by assuming a hypothesis we would like to eventually refute. This hypothesis
is called a null hypothesis, often denoted by H0. In the current application, the null
hypothesis is that the lady has no ability to tell whether milk or tea is poured first into a
cup. This is an example of sharp null hypothesis because all potential outcomes for each
observation are determined, and therefore known, under this hypothesis. In contrast,
we will later consider a nonsharp null hypothesis, which fixes the average potential
outcome rather than every potential outcome.

Second, we choose a test statistic, which is some function of observed data. For
the tea-tasting experiment, the test statistic is the number of correctly specified cups.
Next, under the null hypothesis, we derive the sampling distribution of the test statistic,
which is given in figure 7.2 for our application. This distribution is also called the
reference distribution. Finally, we ask whether the observed value of the test statistic
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Table 7.3. Type I and Type II Errors in Hypothesis Testing.

Reject H0 Retain H0

H0 is true type I error correct
H0 is false correct type II error

Note: H0 represents the null hypothesis.

is likely to occur under the reference distribution. In the current experiment, the
number of correctly classified cups is observed to be 8. If 8 is likely under the reference
distribution, we retain the null hypothesis. If it is unlikely, then we reject the null
hypothesis.

In this textbook, we prefer to use phrases such as “fail to reject the null hypothesis”
and “retain the null hypothesis” instead of “accept the null hypothesis.” Philosophical
views on this issue differ, but we adopt a perspective that failure to reject the null
hypothesis is evidence for some degree of consistency between the data and the
hypothesis, but does not necessarily indicate the correctness of the null hypothesis.
Others, however, argue that the failure to reject the null hypothesis implies acceptance
of the hypothesis. Regardless of one’s stance on this issue, statistical hypothesis testing
provides empirical support for scientific theories.

How should we quantify the degree to which the observed value of the test statistic
is unlikely to occur under the null hypothesis? We use the p-value for this purpose.
The p-value can be understood as the probability that under the null hypothesis, we
observe a value of the test statistic at least as extreme as the one we actually observed.
A smaller p-value provides stronger evidence against the null hypothesis. Importantly,
the p-value does not represent the probability that the null hypothesis is true. This
probability is actually either 1 or 0 because the null hypothesis is either true or false,
though researchers do not know which.

In order to decide whether or not to reject the null hypothesis, we must specify
the level of test α (as explained later, this α is the same as the confidence level α for
confidence intervals discussed earlier). If the p-value is less than or equal to α, then we
reject the null hypothesis. The level of test represents the probability of false rejection
if the null hypothesis is true. This error is called type I error. Typically, we would like
the level of test to be low. Commonly used values of α are 0.05 and 0.01.

Table 7.3 shows two types of errors in hypothesis testing. While researchers can
specify the degree of type I error by choosing the level of test α, it is not possible
to directly control type II error, which results when researchers retain a false null
hypothesis. Notably, there is a clear trade-off between type I and type II errors in
that minimizing type I error usually increases the risk of type II error. As an extreme
example, suppose that we never reject the null hypothesis. Under this scenario, the
probability of type I error is 0 if the null hypothesis is true, but the probability of type II
error is 1 if the null hypothesis is false.

In the case of the tea-tasting experiment, the test statistic is the number of correctly
classified cups. Since the observed value of this test statistic was 8, which is the most
extreme value, the p-value equals the probability that the number of correct guesses is
8 or 1/70 ≈ 0.014. If the lady correctly classified 6 cups instead of 8, two values are at
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least as extreme as the observed value: 6 and 8. Therefore, in this case, the p-value is
(4C0 × 4C4 + 4C1 × 4C3)/70 = (1 + 16)/70 ≈ 0.243.

These p-values are one-sided p-values (or one-tailed p-values) because they consider
only the values of the test statistic that are greater than or equal to the observed
value. Under this one-sided alternative hypothesis, which is the complement of the
null hypothesis, we ignore an extreme response on the other side, such as classifying
all 8 cups incorrectly. In contrast, if we specify a two-sided alternative hypothesis,
then computing the two-sided p-value (or two-tailed p-value) requires consideration of
extreme values on both sides. If the reference distribution is symmetric, then the two-
sided p-value is twice as great as the one-sided value. In the tea-tasting experiment, the
two-sided p-value is 2/70 ≈ 0.029. If the lady had correctly guessed 6 cups, then the
two-sided p-value is 2 × (1 + 16)/70 ≈ 0.486.

While the framework described here is applicable to any statistical hypothesis
testing, the particular hypothesis testing procedure used for the tea-tasting experiment
is called Fisher’s exact test. As explained earlier, this test is an example of randomization
inference, where the validity of the test can be justified based on the randomization of
treatment assignment.

Fisher’s exact test can be implemented in R using the fisher.test() function.
The main input of this function is a 2 × 2 contingency table in matrix form, where
the rows and columns represent a binary treatment assignment variable and a binary
outcome variable, respectively. Here, as examples, we create tables for the tea-tasting
experiment: one case with all 8 cups correctly classified and the other case with 6 out
of 8 cups correctly classified. In each table, rows represent actual assignments and
columns provide reported guesses with the diagonal elements corresponding to the
correct guesses.

## all correct

x <- matrix(c(4, 0, 0, 4), byrow = TRUE, ncol = 2, nrow = 2)

## 6 correct

y <- matrix(c(3, 1, 1, 3), byrow = TRUE, ncol = 2, nrow = 2)

## “M” milk first, “T” tea first

rownames(x) <- colnames(x) <- rownames(y)<- colnames(y) <- c("M", "T")

x

## M T

## M 4 0

## T 0 4

y

## M T

## M 3 1

## T 1 3

We can specify an alternative hypothesis by setting the alternative argument to
"two.sided" (default), "greater", or "less". In the following code chunk, we
conduct Fisher’s exact test with one-sided and two-sided alternatives. We confirm that
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the p-values obtained from the fisher.test() function are identical to those we
calculated on our own.

## one-sided test for 8 correct guesses

fisher.test(x, alternative = "greater")

##

## Fisher’s Exact Test for Count Data

##

## data: x

## p-value = 0.01429

## alternative hypothesis: true odds ratio is greater than 1

## 95 percent confidence interval:

## 2.003768 Inf

## sample estimates:

## odds ratio

## Inf

## two-sided test for 6 correct guesses

fisher.test(y)

##

## Fisher’s Exact Test for Count Data

##

## data: y

## p-value = 0.4857

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.2117329 621.9337505

## sample estimates:

## odds ratio

## 6.408309

We now summarize the general procedure of statistical hypothesis testing.

In general, statistical hypothesis testing consists of the following five steps:
1. Specify a null hypothesis and an alternative hypothesis.
2. Choose a test statistic and the level of test α.
3. Derive the reference distribution, which refers to the sampling

distribution of the test statistic under the null hypothesis.
4. Compute the p-value, either one-sided or two-sided depending on the

alternative hypothesis.
5. Reject the null hypothesis if the p-value is less than or equal to α.

Otherwise, retain the null hypothesis (i.e., fail to reject the null
hypothesis).
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While statistical hypothesis testing is a principled way to quantify uncertainty, the
methodology has an important disadvantage. In particular, it forces researchers to
make a binary decision about whether to reject the null hypothesis. In many situations,
however, we are not interested in the null hypothesis itself. In fact, we may believe
that the null hypothesis never strictly holds true. Instead, it could be more fruitful to
quantify the degree to which the observed data deviate from the null hypothesis. In
the tea-tasting experiment, we may wish to measure the extent to which the lady can
taste the difference rather than simply whether or not she possesses any ability in this
regard.While the p-value represents the degree to which empirical evidence refutes the
null hypothesis, it does not directly correspond to the substantive quantity of interest.
In other words, while hypothesis testing can determine statistical significance, it often
fails to provide a direct measure of scientific significance.

7.2.3 ONE-SAMPLE TESTS
Using the general principle of statistical hypothesis testing we have introduced, a

variety of hypothesis tests can be developed. We consider one-sample and two-sample
tests, which are among the most commonly used tests. One-sample tests of means are
used to examine the null hypothesis that the population mean equals a specific value.
Two-sample tests, on the other hand, are based on the null hypothesis that the means
of two populations equal each other. Two-sample tests are particularly useful when
analyzing randomized controlled trials, enabling researchers to investigate whether or
not the observed difference in average outcomes between the treatment and control
groups is likely to arise by random chance alone. These tests are used more frequently
than Fisher’s exact test, described earlier, because they do not rely on the sharp null
hypothesis that no unit is affected by the treatment. Instead, two-sample tests concern
whether treatment influences an outcome on average.

We start, as an example of one-sample tests, with a reanalysis of the sample surveys
given in section 7.1.4. Suppose that our null hypothesis is that in the population exactly
half of voters support Obama and the other half do not, i.e., H0 : p = 0.5. Let an
alternative hypothesis be that Obama’s support rate is not 0.5, i.e., H1 : p �= 0.5.
Now, suppose that we conduct a simple random sample and interview 1018 selected
individuals, n = 1018. In this sample, 550 of them express support for Obama whereas
the other individuals do not. This implies that the sample proportion of Obama’s
supporters is 54%, i.e., Xn = 550/1018. Clearly, the sample proportion differs from
the hypothesized proportion, 0.5, but is this difference statistically significant? Is the
difference within the sampling error? Statistical hypothesis testing can answer this
question.

We follow the general procedure of hypothesis testing laid out in section 7.2.2. Since
the null and alternative hypotheses are defined above, we next choose a test statistic
and the level of the test. We use the sample proportion Xn as our test statistic and
set α = 0.05. We then derive the sampling distribution of this test statistic under the
null hypothesis. Following the discussion in section 7.1.3 and utilizing equation (7.12),
we use the central limit theorem to approximate the reference distribution of Xn
as N (0.5, 0.5(1 − 0.5)/1018), where the variance is computed using the formula
V(X)/n = p(1 − p)/n. Note that this variance of the reference distribution is
constructed using Obama’s support rate under the null hypothesis, i.e., p = 0.5.
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Figure 7.3. One-Sided and Two-Sided p-Values. The density curve represents the refer-
ence distribution under the null hypothesis that the population proportion is 0.5. The
observed value is indicated by the solid vertical line. The two-sided p-value equals the
sum of the two blue shaded areas under the curve, whereas the one-sided p-value is
equal to the one of the two blue areas under the curve (depending on the alternative
hypothesis).

Under this setup, the two-sided p-value, corresponding to our null and alternative
hypotheses, can be computed as the probability that under the null hypothesis we
observe a value more extreme than the observed value, i.e., Xn = 550/1018. Figure 7.3
shows this graphically where a more extreme value is indicated by any value either
above the observed value (solid line approximately at 0.54) or below its symmetric
value (dotted line approximately at 0.46). Thus, the two-sided p-value equals the sum
of the two blue shaded areas under the density curve. We use the pnorm() function
to calculate each area where the argument lower.tail needs to be set to FALSE in
order to compute the upper blue area in the figure.

n <- 1018

x.bar <- 550 / n

se <- sqrt(0.5 * 0.5 / n) # standard deviation of sampling distribution

## upper blue area in the figure

upper <- pnorm(x.bar, mean = 0.5, sd = se, lower.tail = FALSE)

## lower blue area in the figure; identical to the upper area

lower <- pnorm(0.5 - (x.bar - 0.5), mean = 0.5, sd = se)

## two-sided p-value

upper + lower

## [1] 0.01016866

In this particular case, since both the upper and lower shaded areas have the same
area (because the normal distribution is symmetric around its mean), we can simply
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double one of the areas to obtain the two-sided p-value. Note that this may not work
in other cases where the reference distribution is not symmetric.

2 * upper

## [1] 0.01016866

If, on the other hand, our alternative hypothesis is p > 0.5 rather than p �= 0.5,
then we must compute the one-sided p-value. In this case, there is no need to consider
the possibility of an extremely small value because the alternative hypothesis specifies
p to be greater than the null value. Hence, the one-sided p-value is given by the blue
area under the curve above the observed value in the figure.

## one-sided p-value

upper

## [1] 0.005084332

Regardless of whether we use the one-sided or two-sided p-value, we reject the null
hypothesis that Obama’s support in the population is exactly 50%. We conclude that
the 4 percentage point difference we observe is unlikely to arise due to chance alone.

When using the normal distribution as the reference distribution, researchers
often use the z-score to standardize the test statistic by subtracting its mean and
dividing it by its standard deviation. Once this transformation is made, the reference
distribution becomes the standard normal distribution. That is, if we use μ0 to denote
the hypothesized mean under the null hypothesis, we have the following result so long
as the sample size is sufficiently large (due to the central limit theorem):

Xn − μ0

standard error of Xn
∼ N (0, 1). (7.19)

Note that this transformation does not change the outcome of the hypothesis testing
conducted above. In fact, the p-value will be identical with or without this transfor-
mation. However, one can easily compare the z-score with the critical values shown in
table 7.1 in order to determine whether to reject the null hypothesis without computing
the p-value. For example, under the two-sided alternative hypothesis, if the z-score is
greater than 1.96, then we reject the null hypothesis. We now show, using the current
example, that we obtain the same p-value as above.

z.score <- (x.bar - 0.5) / se

z.score

## [1] 2.57004

pnorm(z.score, lower.tail = FALSE) # one-sided p-value

## [1] 0.005084332



7.2 Hypothesis Testing 353

2 * pnorm(z.score, lower.tail = FALSE) # two-sided p-value

## [1] 0.01016866

This test, which is based on the z-score of the sample mean, is called the one-sample
z-test. Although we used this test for a Bernoulli random variable in this example, the
test can be applied to a wide range of nonbinary random variables so long as the sample
size is sufficiently large and the central limit theorem is applicable. For nonbinary
random variables, we will use the sample variance to estimate the standard error. If
the random variable X is distributed according to the normal distribution, then the
same test statistic, i.e., the z-score of the sample mean, follows the t-distribution with
n− 1 degrees of freedom instead of the standard normal distribution. This one-sample
t-test is more conservative than the one-sample z-test, meaning that the former gives
a greater p-value than the latter. Some researchers prefer conservative inference and
hence use the one-sample t-test rather than the one-sample z-test.

Suppose that {X1, X2, . . . , Xn} are n independently and identically distributed
random variables with mean μ and variance σ 2. The one-sample z-test consists
of the following components:

1. Null hypothesis that the population mean μ is equal to a prespecified
value μ0: H0 : μ = μ0

2. Alternative hypothesis: H1 : μ �= μ0 (two-sided), H1 : μ > μ0
(one-sided), or H1 : μ < μ0 (one-sided)

3. Test statistic (z-statistic): Zn = (Xn − μ0)/
√

σ̂ 2/n, where
Xn = 1

n
∑n

i=1 Xi (sample mean)
4. Reference distribution: Zn ∼ N (0, 1) when n is large
5. Variance: σ̂ 2 = 1

n−1
∑n

i=1(Xi − Xn)2 (sample variance) or
σ̂ 2 = μ0(1 − μ0) if X is a Bernoulli random variable

6. p-value: �(−|Zn|) (one-sided) and 2�(−|Zn|) (two-sided), where �(·)
is the cumulative distribution function (CDF) of the standard
normal distribution

If X is normally distributed, the same test statistic Zn is called the t-statistic and
follows the t-distribution with n−1 degrees of freedom. The p-value will be based
on the cumulative distribution of this t-distribution. This is called the one-sample
t-test, which is more conservative than the one-sample z-test.

There exists a general one-to-one relationship between confidence intervals and
hypothesis tests. Compare equation (7.19) with equation (7.15). The difference is that
the unknown population mean E(X) in the former is replaced with the hypothesized
population mean μ0 in the latter. Note that under a null hypothesis the hypothesized
mean μ0 represents the actual population mean. This suggests that we reject a null
hypothesis H0 : μ = μ0 using the α-level two-sided test if and only if the (1−α)×100%
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confidence interval does not contain μ0. We can confirm this result using the current
example by checking that 0.5 is contained in the 99% confidence interval (since we
reject the null hypothesis when α = 0.1) but not in the 95% confidence interval (we
fail to reject the null when α = 0.05).

## 99% confidence interval contains 0.5

c(x.bar - qnorm(0.995) * se, x.bar + qnorm(0.995) * se)

## [1] 0.4999093 0.5806408

## 95% confidence interval does not contain 0.5

c(x.bar - qnorm(0.975) * se, x.bar + qnorm(0.975) * se)

## [1] 0.5095605 0.5709896

It turns out that this one-to-one relationship between confidence intervals and
hypothesis testing holds in general. Many researchers, however, prefer to report
confidence intervals rather than p-values because the former also contain information
about the magnitude of effects, quantifying scientific significance as well as statistical
significance.

We conducted the one-sample z-test for sample proportion “by hand” above in
order to illustrate the underlying idea. However, R has the prop.test() function,
which enables us to conduct this test in a single line of R code. For the one-sample test
of sample proportion like the one above, the function takes the number of successes
as the main argument x and the number of trials as the argument n. In addition,
one can specify the success probability under the null hypothesis as p, as well as the
alternative hypothesis ("two.sided" for the two-sided alternative hypothesis, and
either "less" or "greater" for the one-sided alternative hypothesis). The default
confidence level is 95%, which we can change with the conf.level argument.

Finally, the correct argument determines whether a continuity correction should
be applied in order to improve the approximation (the default is TRUE). This correction
is generally recommended, especially when the sample size is small because the
binomial distribution, which is a discrete distribution, is approximated by a continuous
distribution, i.e., the normal distribution. We first show that prop.test() without a
continuity correction gives a result identical to the one obtained earlier. We then show
the result based on the continuity correction.

## no continuity correction to get the same p-value as above

prop.test(550, n = n, p = 0.5, correct = FALSE)

##

## 1-sample proportions test without continuity

## correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.6051, df = 1, p-value = 0.01017

## alternative hypothesis: true p is not equal to 0.5
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## 95 percent confidence interval:

## 0.5095661 0.5706812

## sample estimates:

## p

## 0.540275

## with continuity correction

prop.test(550, n = n, p = 0.5)

##

## 1-sample proportions test with continuity correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.445, df = 1, p-value = 0.01113

## alternative hypothesis: true p is not equal to 0.5

## 95 percent confidence interval:

## 0.5090744 0.5711680

## sample estimates:

## p

## 0.540275

The prop.test() function also conveniently yields confidence intervals. Note
that the standard error used for confidence intervals is different from the standard
error used for hypothesis testing. This is because the latter standard error is derived
under the null hypothesis

√
p(1 − p)/n, whereas the standard error for confidence

intervals is computed using the estimated proportion,
√

Xn(1 − Xn)/n. To illustrate a
different level of confidence intervals, we can compute 99% confidence intervals using
the conf.level argument.

prop.test(550, n = n, p = 0.5, conf.level = 0.99)

##

## 1-sample proportions test with continuity correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.445, df = 1, p-value = 0.01113

## alternative hypothesis: true p is not equal to 0.5

## 99 percent confidence interval:

## 0.4994182 0.5806040

## sample estimates:

## p

## 0.540275

As another example, we revisit the analysis of the STAR project given in
section 7.1.5. We first conduct a one-sample t-test just for illustration. Suppose that we
test the null hypothesis that the population mean test score is 710, i.e., H0 : μ = 710.
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We use the t.test() function where we specify the null value μ0 using the mu
argument. The other arguments such as alternative and conf.level work in
the exact same way as for the prop.test() function. We use the reading test
score for our analysis and conduct a two-sided one-sample t-test. As the result below
shows, we retain, at the 0.05 level, the null hypothesis that the population mean of
test score is 710. The resulting p-value is small, leading to the rejection of the null
hypothesis.

## two-sided one-sample t-test

t.test(STAR$g4reading, mu = 710)

##

## One Sample t-test

##

## data: STAR$g4reading

## t = 10.407, df = 2352, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 710

## 95 percent confidence interval:

## 719.1284 723.3671

## sample estimates:

## mean of x

## 721.2478

7.2.4 TWO-SAMPLE TESTS
We now move to a more realistic analysis of the STAR project. When analyzing

randomized controlled trials like this, researchers often conduct a statistical hypothesis
test with the null hypothesis that the population average treatment effect (PATE) is
zero, i.e., H0 : E(Yi (1) − Yi (0)) = 0 with a two-sided alternative hypothesis given by
H1 : E(Yi (1) − Yi (0)) �= 0. If we assume that the PATE cannot be negative, then we
employ a one-sided alternative hypothesis, H1 : E(Yi (1) − Yi (0)) > 0. In contrast, if
we assume that the PATE cannot be positive, we set H1 : E(Yi (1) − Yi (0)) < 0. In this
application, we would like to test whether or not the PATE of small class size on the
grade-four reading score (relative to regular class size) is zero.

To test this null hypothesis, we use the difference-in-means estimator as a test sta-
tistic. More generally, beyond randomized controlled trials, we can use the two-sample
tests based on the difference-in-means estimator to investigate the null hypothesis that
the means are equal between these two populations. What is the reference distribution
of this test statistic? We can approximate it by appealing to the central limit theorem
as in section 7.1.5. The theorem implies that the sample means of the treatment and
control groups have a normal distribution. Therefore, under the null hypothesis of
equal means between the two populations, the difference between these two sample
means is also normally distributed with mean zero. Furthermore, the z-score of the
difference in sample means follows the standard normal distribution. We can use this
fact to conduct the two-sample z-test (see equation (7.18) for the expression of standard
error, which serves as the denominator of the test statistic). As in the one-sample tests,
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if the outcomes are assumed to be normally distributed, the two-sample t-test can be
used, which yields a more conservative inference.

Suppose that {X1, X2, . . . , Xn0} represent n0 independently and identically
distributed random variables with mean μ0 and variance σ 2

0 . Similarly,
{Y1,Y2, . . . ,Yn1} represent n1 independently and identically distributed random
variables with mean μ1 and variance σ 2

1 . The two-sample z-test of sample means
consists of the following components:

1. Null hypothesis that two populations have the samemean: H0 : μ0 = μ1
2. Alternative hypothesis: H1 : μ0 �= μ1 (two-sided), H1 : μ0 > μ1

(one-sided), or H1 : μ0 < μ1 (one-sided)
3. Test statistic (z-statistic): Zn = (Yn1 − Xn0 )/

√
1
n1 σ̂

2
1 + 1

n0 σ̂
2
0

4. Reference distribution: Zn ∼ N (0, 1) when n0 and n1 are large
5. Variance: σ̂ 2

0 = 1
n0−1
∑n0

i=1(Xi − Xn0 )2 and σ̂ 2
1 = 1

n1−1
∑n1

i=1(Yi − Yn1 )2

(sample variances) or σ̂ 2
0 = σ̂ 2

1 = p̂(1 − p̂) with
p̂ = n0

n0+n1 Xn0 + n1
n0+n1Yn1 if X and Y are Bernoulli random variables

6. p-value: �(−|Zn|) (one-sided) and 2�(−|Zn|) (two-sided), where �(·)
is the cumulative distribution function (CDF) of the standard normal
distribution

If X and Y are normally distributed, the same test statistic Zn is called the
t-statistic and follows the t-distribution. The p-value will be based on the cumu-
lative distribution of this t-distribution. This is called the two-sample t-test,
which is more conservative than the one-sample z-test.

Recall from section 7.1.5 that the estimated PATE is stored as an R object ate.est
whereas its standard error is given by the R object ate.se. Using these objects, we
compute the one-sided and two-sided p-values as follows.

## one-sided p-value

pnorm(-abs(ate.est), mean = 0, sd = ate.se)

## [1] 0.09350361

## two-sided p-value

2 * pnorm(-abs(ate.est), mean = 0, sd = ate.se)

## [1] 0.1870072

Since this p-value is much greater than the typical threshold of 5%, we cannot reject
the hypothesis that the average treatment effect of small class size on the fourth-grade
reading test score is zero.

The hypothesis test conducted above is based on the large sample approximation
because we relied upon the central limit theorem to derive the reference distribution.
Similar to the discussion in section 7.1.5, if we assume that the outcome variable
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is normally distributed, then we could use the t-distribution instead of the normal
distribution to conduct a hypothesis test. As a test statistic, we use the z-score for the
difference-in-means estimator, which is called the t-statistic in the case of this two-
sample t-test. Unlike the one-sample example discussed in section 7.1.5, however, the
degrees of freedom must be approximated for the two-sample t-test. Because the
t-distribution generally has heavier tails than the normal distribution, the t-test is more
conservative and hence is often preferred even when the outcome variable may not be
normally distributed.

In R, we can conduct a two-sample t-test using the t.test() function as we did for
a one-sample t-test. For the two-sample t-test, the function takes two vectors, each of
which contains data for one of the two groups. We can specify the difference between
the means of the two groups, or the PATE in this application, under the null hypothesis
via the mu argument. The default value for this argument is zero, which is what we
would like to use in the current example.

## testing the null of zero average treatment effect

t.test(STAR$g4reading[STAR$classtype == 1],

STAR$g4reading[STAR$classtype == 2])

##

## Welch Two Sample t-test

##

## data:STAR$g4reading[STAR$classtype==1] and STAR$g4reading[STAR$classtype == 2]

## t = 1.3195, df = 1541.2, p-value = 0.1872

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.703591 8.706055

## sample estimates:

## mean of x mean of y

## 723.3912 719.8900

The output displays the value of the t-statistic as well as the p-value and the degrees
of freedom for Student’s t-distribution used for the test. Since the p-value is greater
than the standard threshold of α = 0.05, we fail to reject the null hypothesis that
the average treatment effect of small class size on the fourth-grade reading score is
zero. As in the case of prop.test(), the output of the t.test() function contains
the confidence interval for the corresponding level. As expected from the use of the
t-distribution, this confidence interval is slightly wider than the confidence interval
based on the normal approximation we obtained in section 7.1.5. The confidence
interval also contains zero, which is consistent with the fact that we fail to reject the
null hypothesis of zero average treatment effect.

As another application of hypothesis tests, we reanalyze the labor market discrim-
ination experiment described in section 2.1. In this experiment, fictitious résumés
of job applicants were sent to potential employers. Researchers randomly assigned
stereotypically African-American or Caucasian names to each résumé and examined
whether or not the callback rate depended on the race of the applicant. The data set
we analyze is contained in the CSV file resume.csv. The names and descriptions
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of variables in this data set are given in table 2.1. The outcome variable of interest is
call, which indicates whether or not each résumé received a callback. The treatment
variable is the race of the applicant, race, and we focus on the comparison between
black-sounding and white-sounding names.

We test the null hypothesis that the probability of receiving a callback is the same
between résumés with black-sounding names and those with white-sounding names.
We use the prop.test() function to implement the two-sample z-test. The input is a
table whose columns represent the counts of successes and failures and rows represent
the two groups to be compared. We will use a one-sided test because résumés with
black-sounding names are hypothesized to receive fewer callbacks.

resume <- read.csv("resume.csv")

## organize the data in tables

x <- table(resume$race, resume$call)

x

##

## 0 1

## black 2278 157

## white 2200 235

## one-sided test

prop.test(x, alternative = "greater")

##

## 2-sample test for equality of proportions with

## continuity correction

##

## data: x

## X-squared = 16.449, df = 1, p-value = 2.499e-05

## alternative hypothesis: greater

## 95 percent confidence interval:

## 0.01881967 1.00000000

## sample estimates:

## prop 1 prop 2

## 0.9355236 0.9034908

Thus, the result supports the alternative hypothesis that résumés with white-
sounding names are more likely to receive callbacks than those with black-
sounding names. It is instructive to directly compute this p-value without using the
prop.test() function. Under the null hypothesis of equal proportions between the
two groups, i.e., H0 : μ0 = μ1, the standard error of the difference-in-means (or more
accurately difference-in-proportions) estimator can be computed as

√
V̂(X)
n0

+ V̂(Y)
n1

=
√

p̂(1 − p̂)
n0

+ p̂(1 − p̂)
n1

=
√

p̂(1 − p̂)
(

1
n0

+ 1
n1

)
, (7.20)
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where X and Y are the outcome variables for the résumés with black-sounding
and white-sounding names, respectively, n0 and n1 are sample sizes, and p̂ =

1
n0+n1 (

∑n0
i=1 Xi +

∑n1
i=1 Yi ) is the overall sample proportion. We use the same estimate

p̂(1 − p̂) for the variances of X and Y because under the null hypothesis of identical
proportions, their variances, which are based on the proportions, are also identical.

## sample size

n0 <- sum(resume$race == "black")

n1 <- sum(resume$race == "white")

## sample proportions

p <- mean(resume$call) # overall

p0 <- mean(resume$call[resume$race == "black"]) # black

p1 <- mean(resume$call[resume$race == "white"]) # white

## point estimate

est <- p1 - p0

est

## [1] 0.03203285

## standard error

se <- sqrt(p * (1 - p) * (1 / n0 + 1 / n1))

se

## [1] 0.007796894

## z-statistic

zstat <- est / se

zstat

## [1] 4.108412

## one-sided p-value

pnorm(-abs(zstat))

## [1] 1.991943e-05

The exact same p-value can be obtained using the prop.test() function without
a continuity correction.

prop.test(x, alternative = "greater", correct = FALSE)

##

## 2-sample test for equality of proportions without

## continuity correction

##

## data: x

## X-squared = 16.879, df = 1, p-value = 1.992e-05

## alternative hypothesis: greater

## 95 percent confidence interval:
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Figure 7.4. The Distribution of p-Values for Hypothesis Tests Published in Two Leading
Political Science Journals.

## 0.01923035 1.00000000

## sample estimates:

## prop 1 prop 2

## 0.9355236 0.9034908

7.2.5 PITFALLS OF HYPOTHESIS TESTING
Since Fisher’s tea-tasting experiment, hypothesis testing has been extensively used

in the scientific community to determine whether or not empirical findings are
statistically significant. Statistical hypothesis testing represents a rigorous methodology
to draw a conclusion in the presence of uncertainty. However, the prevalent use of
hypothesis testing also leads to publication bias because only statistically significant
results, and especially the ones that are surprising to the scientific community, tend
to be published. In many social science journals, the α-level of 5% is regarded as the
cutoff that determines whether empirical findings are statistically significant or not. As
a result, researchers tend to submit their papers to journals only when their empirical
results have p-values smaller than this 5% threshold. In addition, journals may also be
more likely to publish statistically significant results than nonsignificant results. This is
problematic because even if the null hypothesis is true, researchers have a 5% chance
of obtaining a p-value less than 5%.

In one study, two researchers examined more than 100 articles published in the two
leading political science journals over a decade or so.2 The researchers collected the
p-values for the hypotheses tested in those articles. Figure 7.4 shows that a majority
of reported findings have p-values less than or equal to the 5% threshold, which is

2 Alan Gerber and Neil Malhotra (2008) “Do statistical reporting standards affect what is published?
Publication bias in two leading political science journals.” Quarterly Journal of Political Science, vol. 3, no. 3,
pp. 313–326.
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(a) Paul the Octopus (b) Mani the Parakeet

Figure 7.5. Two Animal Oracles that Correctly Predicted the Outcomes of Soccer
Matches. Sources: (a) Reuters/Wolfgang Rattay. (b) AP Images/Joan Leong.

indicated by the blue vertical line. In addition, there appears to be a discontinuous
jump at the threshold, suggesting that journals are publishing more empirical results
that are just below the threshold than results just above it.

Another important pitfall regarding hypothesis testing is multiple testing. Recall
that statistical hypothesis testing is probabilistic. We never know with 100% certainty
whether the null hypothesis is true. Instead, as explained earlier, we typically have type I
and type II errors when conducting hypothesis tests (see table 7.3). Multiple testing
problems refer to the possibility of false discoveries when testing multiple hypotheses.

To see this, suppose that a researcher tests 10 hypotheses when, unbeknown to the
researcher, all of these hypotheses are in fact false. What is the probability that the
researcher rejects at least one null hypothesis using 5% as the threshold? If we assume
independence among these hypotheses tests, we can compute this probability as

P (reject at least one hypothesis) = 1 − P (reject no hypothesis)
= 1 − 0.9510 ≈ 0.40.

The second equality follows because the probability of not rejecting the null hypothesis
when the null hypothesis is true is 1 − α = 0.95 and we assume independence among
these 10 hypothesis tests. Thus, the researcher has a 40% chance of making at least one
false discovery. The lesson here is that if we conduct many hypothesis tests, we are
likely to falsely find statistically significant results.

To illustrate the multiple testing problem, consider “Paul the Octopus” shown in
figure 7.5a. This octopus in a German aquarium attracted media attention during the
2010World Cup soccer tournament by correctly predicting all sevenmatches involving
Germany, as well as the outcome of the final match between the Netherlands and
Spain. Paul predicted by choosing to enter one of two containers with a country flag
as shown in the figure. Given this data, we can conduct a hypothesis test with the null
hypothesis that Paul does not possess any ability to predict soccer matches. Under this
null hypothesis, Paul randomly guesses a winner out of two countries in question.What
is the probability that Paul correctly predicts the outcomes of all 8 matches? Since Paul
has a 50% chance of correctly predicting each match, this one-sided p-value is equal
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to 1/28 ≈ 0.004. This value is well below the usual 5% threshold and hence can be
considered statistically significant.

However, the problem of multiple testing suggests that if we have many animals
predict soccer matches, we are likely to find an animal that appears to be prophetic.
During the same world cup, another animal, “Mani the Parakeet” shown in figure 7.5b,
was reported to have a similar oracle ability. The parakeet correctly predicted only
6 out of 8 matches. Each time, he selected one of two pieces of paper with his beak
and flipped it to reveal a winner, without viewing country flags as Paul did. Since no
scientific theory suggests animals can possess such predictive ability, we may conclude
that Paul and Mani represent false discoveries due to the problem of multiple testing.
Although beyond the scope of this book, statisticians have developed various methods
that make appropriate adjustments for multiple testing.

The multiple testing problem is that conducting many hypothesis tests is likely
to result in false discoveries, i.e., incorrect rejection of null hypotheses.

7.2.6 POWER ANALYSIS
Another problem of hypothesis testing is that null hypotheses are often not inter-

esting. For example, who would believe that the small class in the STAR study has
exactly zero average causal effect on students’ test scores as assumed under the null
hypothesis? The effect size might be small, but it is hard to imagine that it is exactly
zero. A related problem is that failure to reject the null hypothesis does not necessarily
mean that the null hypothesis is true. Failure to reject the null may arise because data
are not informative about the null hypothesis. For example, if the sample size is too
small, then even if the true average treatment effect is not zero, researchers may fail to
reject the null hypothesis of zero average effect because the standard error is too large.

We use power analysis in order to formalize the degree of informativeness of data in
hypothesis tests. The power of a statistical hypothesis test is defined as one minus the
probability of type II error:

power = 1 − P (type II error).

Recall from the discussion in section 7.2.2 that type II error occurs when researchers
retain a false null hypothesis. Therefore, we would like to maximize the power of a
statistical hypothesis test so that we can detect departure from the null hypothesis as
much as possible.

Power analysis is often used to determine the smallest sample size necessary to
estimate the parameter with enough precision that its observed value is distinguishable
from the parameter value assumed under the null hypothesis. This is typically done
as part of research planning in order to inform data collection. In sample surveys, for
example, researchers wish to know the number of people they must interview in order
to reject the null hypothesis of an exact tie in support level when one candidate is ahead
of the other by a prespecified degree (see also the discussion in section 7.1.4). Moreover,
experimentalists use power analysis to compute the number of observations necessary
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Figure 7.6. Illustration of Power Analysis. In the left-hand plot, the solid black line
represents the sampling distribution of sample proportion under the null hypothesis
p = 0.5 (vertical dotted line). The blue solid line represents the sampling distribution
of the test statistic under a hypothetical data-generating process, which has mean 0.48.
The sum of the two blue shaded areas equals the power of this statistical test when the
significance level is α = 0.05. The vertical dashed lines represent thresholds, above or
below which the null hypothesis will be rejected. The right-hand plot displays the power
function under the same setting with three different sample sizes.

to reject the null hypothesis of zero average treatment effect when the effect is actually
not zero. As a result, power analysis is often required for research grant applications in
order to justify the budget that researchers are requesting.

Again, we use survey sampling as an example. Suppose that we wish to find out how
many respondents we must interview to be able to reject the null hypothesis that the
support level for Obama, denoted by p, is exactly 50% when the true support level is at
least 2 percentage points away from an exact tie, i.e., 48% or less, or 52% or greater. That
is, 2 percentage points is the smallest deviation from the null hypothesis we would like
to detect with a high probability. Further assume that we will use the sample proportion
as the test statistic, and that the significance level is set to α = 0.05 with a two-sided
alternative hypothesis.

To compute the power, we need to consider two sampling distributions of the test
statistic. The first is the sampling distribution under the null distribution. We have
already derived the large sample approximation of this sampling distribution earlier:
N (p, p(1 − p)/n), where p is the null value of the population proportion. In our
application, p = 0.5. The second is the sampling distribution under a hypothetical
data-generating process. In the current case, this distribution is approximated by
N (p∗, p∗(1− p∗)/n) via the central limit theorem, where p∗ is either less than or equal
to 0.48 or greater than or equal to 0.52.

The left-hand plot of figure 7.6 graphically illustrates the mechanics of power
analysis in this case. In the plot, the two sampling distributions of the sample
proportion, one centered around 0.5 under the null hypothesis (black solid line) and
the other centered around 0.48 under a hypothetical data-generating process (blue
solid line), are shown. We choose 0.48 as the mean value under the hypothetical data-
generating process because any distribution with a mean less than this value would
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result in greater statistical power, which is the probability of correctly rejecting the null,
and hence would require a smaller sample size. For the meantime, we set the sample
size n to 250.

Under this setting, we compute the power of the statistical test, which is the
probability of rejecting the null hypothesis. To do this, we first derive the thresholds
that determine the rejection region. As shown in section 7.2.3, the threshold is equal to
the null value p0 plus or minus the product of the standard error and critical value zα/2,
i.e., p0 ± zα/2 × standard error, where in the current setting p0 = 0.5 and zα/2 ≈ 1.96.
In the left-hand plot of the figure, these thresholds are denoted by black dashed lines
and we reject the null hypothesis if an observed value is more extreme than they are.

We use the probability distribution indicated by the blue solid line in the figure
when computing the probability of rejection under the hypothetical data-generating
process. That is, the power of the test equals the sum of the two blue shaded areas in
the figure, one large area below the lower threshold and the other small area above the
upper threshold. Formally, it is given by

power = P (Xn < p − zα/2 × standard error) + P (Xn > p + zα/2 × standard error).

In this equation, the sample proportion Xn is assumed to be approximately distributed
according to N (p∗, p∗(1 − p∗)/n), where in the current application p∗ is set to 0.48.
We can compute the power of a test in R as follows.

## set the parameters

n <- 250

p.star <- 0.48 # data-generating process

p <- 0.5 # null value

alpha <- 0.05

## critical value

cr.value <- qnorm(1 - alpha / 2)

## standard errors under the hypothetical data-generating process

se.star <- sqrt(p.star * (1 - p.star) / n)

## standard error under the null

se <- sqrt(p * (1 - p) / n)

## power

pnorm(p - cr.value * se, mean = p.star, sd = se.star) +

pnorm(p + cr.value * se, mean = p.star, sd = se.star, lower.tail = FALSE)

## [1] 0.09673114

Under these conditions, the power of the test is only 10%. We can examine how
the power of this test changes as a function of the sample size and hypothetical data-
generating process. The right-hand plot of figure 7.6 presents the power function, where
the horizontal axis represents the population proportion under the hypothetical data-
generating process and each line indicates a different sample size. We observe that the
power of a statistical test increases as the sample size becomes greater and the true
population proportion p∗ shifts away from the null value p = 0.5.
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The above specific example illustrates the main principle of power analysis. We
summarize the general procedure below.

Power is defined as the probability of rejecting the null hypothesis when the null
hypothesis is false, which is equal to one minus the probability of type II error.
Power analysis consists of the following steps:

1. Select the settings of the statistical hypothesis test you plan to use. This
includes the specification of the test statistic, null and alternative
hypotheses, and significance level.

2. Choose the population parameter value under a hypothetical
data-generating process.

3. Compute the probability of rejecting the null hypothesis under this
data-generating process with a given sample size.

One can then vary the sample size to examine how the power of the test changes
to decide the sample size necessary for the desired level of power.

The power analysis can be conducted in a similar manner for two-sample tests. Con-
sider the two-sample test of proportions, which can be used to analyze a randomized
experiment with a binary outcome variable. The test statistic is the difference in sample
proportion between the treatment and control groups, Yn1 − Xn0 . Under the null
hypothesis that this difference in the population, or the population average treatment
effect (PATE), is equal to zero, the sampling distribution of the test statistic is given
by N (0, p(1 − p)(1/n1 + 1/n0)), where p is the overall population proportion (see
equation (7.20)), which is equal to the weighted average of the proportions in the two
groups, p = (n0 p0 + n1 p1)/(n0 + n1). To compute the power of the statistical test in
this case, we must specify the population proportion separately for the treatment and
control groups, p∗

1 and p∗
0 , under a hypothetical data-generating process. Then, the

sampling distribution of the test statistic under this data-generating process is given by
N (p∗

1 − p∗
0 , p∗

1 (1− p∗
1 )/n1 + p∗

0 (1− p∗
0 )/n0). Using this information, we can compute

the probability of rejecting the null.
As an example, consider the résumé experiment analyzed in section 2.1. Suppose

that we plan to send out 500 résumés with black-sounding names and another 500
résumés with white-sounding names. Further, assume that we expect the callback rate
to be around 5% for black names and 10% for white names.

## parameters

n1 <- 500

n0 <- 500

p1.star <- 0.05

p0.star <- 0.1

To compute the power of this statistical test, we first compute the overall callback
rate as a weighted average of callback rates of the two groups, where the weights are
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their sample size. We then compute the standard error under the null hypothesis, i.e.,
standard error = √

p(1 − p)(1/n0 + 1/n1), as well as under the hypothetical data-
generating process, i.e., standard error∗ =√p∗

1 (1 − p∗
1 )/n1 + p∗

0 (1 − p∗
0 )/n0.

## overall callback rate as a weighted average

p <- (n1 * p1.star + n0 * p0.star) / (n1 + n0)

## standard error under the null

se <- sqrt(p * (1 - p) * (1 / n1 + 1 / n0))

## standard error under the hypothetical data-generating process

se.star <- sqrt(p1.star * (1 - p1.star) / n1 + p0.star * (1 - p0.star) / n0)

We can now compute the power by calculating the probability that the difference
in two proportions, Yn − Xn, takes a value either less than −zα/2 × standard error or
greater than −zα/2 × standard error∗, under the hypothetical data-generating process.

pnorm(-cr.value * se, mean = p1.star - p0.star, sd = se.star) +

pnorm(cr.value * se, mean = p1.star - p0.star,

sd = se.star, lower.tail = FALSE)

## [1] 0.85228

While for illustration we computed the power by hand, we can use the
power.prop.test() function available in R. This function, which is applicable
to the two-sample test for proportions, can either compute the power given a set of
parameters or determine a parameter value given a target power level. The arguments
of this function include the sample size per group (n), population proportions for
two groups (p1.star and p2.star), significance level (sig.level), and power
(power). Note that the function assumes the two groups have an identical sample size,
i.e., n0 = n1. To compute the power, we set power = NULL (default). The following
syntax gives a result identical to what we computed above.

power.prop.test(n = 500, p1 = 0.05, p2 = 0.1, sig.level = 0.05)

##

## Two-sample comparison of proportions power calculation

##

## n = 500

## p1 = 0.05

## p2 = 0.1

## sig.level = 0.05

## power = 0.8522797

## alternative = two.sided

##

## NOTE: n is number in *each* group



368 Chapter 7: Uncertainty

The power.prop.test() function also enables sample size calculation by simply
setting the power argument to a desired level and setting n to NULL (default). For
example, if we want to know, under the same conditions as above, theminimum sample
size necessary to obtain a 90% level of power, we use the following R syntax. The result
below implies that we need at least 582 observations per group in order to achieve
this power.

power.prop.test(p1 = 0.05, p2 = 0.1, sig.level = 0.05, power = 0.9)

##

## Two-sample comparison of proportions power calculation

##

## n = 581.0821

## p1 = 0.05

## p2 = 0.1

## sig.level = 0.05

## power = 0.9

## alternative = two.sided

##

## NOTE: n is number in *each* group

For continuous variables, we can conduct a power analysis based on Student’s
t-test, introduced in section 7.2.4. The logic is exactly the same as that described
above for one-sample and two-sample tests of proportions. The power.t.test()
function can perform a power analysis where the type argument specifies a two-
sample ("two.sample") or one-sample ("one.sample") test. For a one-sample
t-test, we must specify the mean delta and standard deviation sd of a normal
random variable under a hypothetical data-generating process. For a two-sample
t-test, the function assumes that the standard deviation and sample size are identical
for the two groups. We, therefore, specify the true difference-in-means delta under
a hypothetical data-generating process as well as a standard deviation sd. Finally, the
function assumes the null hypothesis that the mean is zero for a one-sample test and
the mean difference is zero for a two-sample test. If the null value is not zero, then one
simply has to adjust the hypothetical data-generating process by subtracting that value
from the true mean (or mean difference).

Below, we present two examples of using the power.t.test() function. The first
is the power calculation for a one-sample test with a true mean of 0.25 and standard
deviation of 1. The sample size is 100. Recall that the assumed mean value under the
null hypothesis is zero.

power.t.test(n = 100, delta = 0.25, sd = 1, type = "one.sample")

##

## One-sample t test power calculation

##
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## n = 100

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.6969757

## alternative = two.sided

Under this setting, the power is calculated to be 70%. What is the sample size we
need to have a power of 0.9 under the same setting? We can answer this question by
specifying the power argument in the power.t.test() function while leaving the
n argument unspecified.

power.t.test(power = 0.9, delta = 0.25, sd = 1, type = "one.sample")

##

## One-sample t test power calculation

##

## n = 170.0511

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.9

## alternative = two.sided

The minimum sample size for obtaining a power of 0.9 or greater is 171. The second
example is the sample size calculation for a one-sided two-sample test with a true mean
difference of 0.25 and standard deviation of 1. We set the desired power to be 90%.

power.t.test(delta = 0.25, sd = 1, type = "two.sample",

alternative = "one.sided", power = 0.9)

##

## Two-sample t test power calculation

##

## n = 274.7222

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.9

## alternative = one.sided

##

## NOTE: n is number in *each* group

The result shows that we need a minimum of 275 observations per group to achieve
a power of 90% under this setting.
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7.3 Linear Regression Model with Uncertainty

As the final topic of this book, we consider the uncertainty of estimates based
on the linear regression model introduced in chapter 4. In that chapter, we used
the linear regression model mainly as a tool to make predictions. We also showed
that when applied to a randomized controlled trial with binary treatments, the linear
regression model can yield unbiased estimates of average treatment effects. In this
section, we introduce another perspective that portrays the linear regression model
as an approximation of the data-generating process in the real world. Under this
framework, we can quantify the uncertainty of our estimates over repeated hypothetical
sampling from the specified generative model. Once we view the linear regression
model as a generative model, we can compute the standard errors and confidence
intervals for our quantities of interest and conduct hypothesis testing.

7.3.1 LINEAR REGRESSION AS A GENERATIVE MODEL
Recall that the linear regression model with p predictors (explanatory or indepen-

dent variables) is defined as

Yi = α + β1Xi1 + β2Xi2 + · · · + βp Xip + εi . (7.21)

In this model, Y represents the outcome or response variable, Xi j is the j th predictor,
for j = 1, 2, . . . , p, and εi denotes the unobserved error term for the i th obser-
vation. The model also has a total of (p + 1) coefficients to be estimated, where α

represents an intercept and β j denotes a coefficient for the j th explanatory variable for
j = 1, 2, . . . , p.
According to this model, the outcome variable is generated as a linear function of the

explanatory variables and the error term. For example, in section 4.2, we modeled the
relationship between facial impressions and election outcomes using linear regression.
In that application, the election outcome was a linear function of facial impressions
and the error term. The error term contains all determinants of election outcomes that
we do not observe, such as campaign resources, name recognition, and voter
mobilization efforts.

In the model, the only variable we do not directly observe is the error term. As
such, the key assumption of the model concerns the distribution of this random
variable εi . Specifically, the linear regressionmodel is based on the following exogeneity
assumption.

The exogeneity assumption for the linear regression model is defined as
E(εi | X 1, X 2, . . . , X p) = E(εi ) = 0. (7.22)

The assumption implies that the unobserved determinants of outcome, contained
in the error term εi , are unrelated to all the observed predictors Xi j for i =
1, 2, . . . , n and j = 1, 2, . . . , p. In this equation, X j is an n×1 vector containing
the j th covariate of all observations.
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The assumption says that the conditional expectation of the error term given the
explanatory variables, which is the first term in equation (7.22), is equal to its marginal
or unconditional expectation, which is the second term in the equation and is equal
to zero. The marginal expectation of the error term can always be assumed to be zero
in the linear regression model so long as an intercept α is included in the model. The
exogeneity assumption implies that the mean of the error term does not depend on
the predictors or explanatory variables included in the model. In other words, the
unobserved determinants of the outcome variable, which are contained in the error
term, should be uncorrelated with all the observed predictors. In the election example,
this implies that other, unobserved determinants of election outcomes should not be
correlated with candidates’ facial impressions.

In general, the conditional expectation of a random variable Y given another
random variable X , denoted by E(Y | X), is the expectation of Y given a particular
value of X . As such, this conditional expectation is a function of X , i.e., E(Y | X) =
g (X), where g (X) is called the conditional expectation function. All the definitions
and rules of expectation introduced in section 6.3.5 hold for conditional expectation,
except that we treat the variables in the conditioning set as fixed and compute the
expectation with respect to the conditional distribution of Y given X . Thus, under
the exogeneity assumption, the linear regression model assumes that the conditional
expectation function for the outcome variable given the set of predictors is linear:

E(Yi | X 1, . . . , X p) = α + β1Xi1 + · · · + βp Xip.

When deriving this result, we used the exogeneity assumption as well as the fact that
the conditional expectation of β j Xi j given X 1, . . . , X p equals itself.

The conditional expectation of a random variable Y given another random
variable X is denoted by E(Y | X) and is defined as

E(Y | X) =
{∑

y y × f (y | X) if Y is discrete,

∫
y × f (y | X)dy if Y is continuous,

where f (Y | X) is the conditional probability mass function (conditional
probability density function) of the discrete (continuous) random variable Y
given X .

In randomized controlled trials, a violation of exogeneity does not occur because
treatment assignment is randomized. In the framework of the linear regression model,
this means that the treatment variable, which is represented by X , is statistically
independent of all observed and unobserved pretreatment characteristics, which are
contained in ε. Therefore, the exogeneity assumption is automatically satisfied. Con-
sider the randomized controlled trial about women as policy makers described in
section 4.3.1. In this experiment, the explanatory variable of interest, X , is whether
seats in the local government, Gram Panchayat (GP), are reserved for female leaders.
This variable is randomized and hence statistically independent of all other possible
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determinants of policy outcomes. For example, the number of new or repaired drinking
water facilities in the village is likely to be determined not only by the existence
of female leaders but also by numerous other factors such as the population size
and the income level. Fortunately, we do not have to worry about these potential
unobserved confounders because the randomized treatment assignment makes the
treatment variable independent of these factors.

In observational studies, however, the exogeneity assumption may be violated.
Suppose that the reservation of someGPs for female leaders is not randomized. Then, it
is possible that villages with high levels of education and liberal ideologies are likely to
elect female leaders for their GPs. Under this scenario, we cannot simply attribute the
difference in the number of new or repaired drinking water facilities between villages
to the gender of their politicians alone. It may be that highly educated villagers want
better drinking water facilities and politicians are simply responding to the demands of
their constituency. That is, both female and male politicians are responding to their
constituencies, but their policy outcomes are different because they have different
constituencies rather than because their genders are different. In observational studies,
the unobserved confounders may be contained in the error term (e.g., education level
of villagers), and if they are correlated with the observed explanatory variables (e.g.,
gender of politicians), the exogeneity assumption will be violated.

How can we address this problem of unobserved confounding in observational
studies? In chapter 2, we learned that one strategy is to compare the treated units with
similar control units. Ideally, we would like to find units that did not receive treatment
and yet are similar to the treated units in terms of many observed characteristics. In
the study on the minimum wage and employment described in section 2.5, researchers
chose fast-food restaurants in Pennsylvania (PA), in which the minimum wage was
not increased, as the control group for the fast-food restaurants in New Jersey (NJ), for
which theminimumwage was raised. The idea was that since these restaurants are quite
similar in their patterns of employment, products, and sales, we can use the restaurants
in PA to infer the employment level of the restaurants in NJ that would have resulted if
the minimum wage had not been increased. If there exist no unobserved factors, other
than the treatment in NJ, that influence employment in NJ fast-food restaurants (i.e.,
no unobserved confounders), then the average difference in employment between the
restaurants in NJ and those in PA can be attributed to the increase in NJ’s minimum
wage. The assumption of no unobserved confounding factors has several different
names, including unconfoundedness, selection on observables, and no omitted variables,
but they all mean the same thing.

The assumption of no unobserved confounding factors studied in chapter 2,
therefore, is directly related to the exogeneity assumption under the linear regression
model. Indeed, the exogeneity assumption will be violated whenever unobserved
confounding variables exist. In the linear regression model framework, we can address
this problem by measuring these confounders and including them as additional
predictors in the model in order to adjust for their differences between the treatment
and control groups. Although this strategy assumes a linear relationship between the
outcome and these confounding variables, conceptually it is the same as comparing
treated and control units that have similar characteristics. It can be shown that so
long as all confounding variables are included in the model (and the linear relationship
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between the outcome and all explanatory variables holds), the estimated coefficient for
the treatment variable represents an unbiased estimate of the average treatment effect.

In the minimum-wage example, assume that the only confounding factors between
the fast-food restaurants in NJ and those in PA are the fast-food chain to which each
restaurant belongs, its wage, and the proportion of full-time employment before the
minimum wage was increased in NJ. Thus, we adjust for these three variables in the
linear model, where the outcome variable is the proportion of full-time employment
after the minimum wage was increased in NJ and the treatment variable is whether a
restaurant is located in NJ. We use the data set described in table 2.5 and regress the
outcome variable and three confounding variables using the lm() function. Before we
fit the linear regression, we compute the proportion of full-time employment before
and after the minimum wage was increased in NJ. We also create an indicator, or
“dummy” variable, that equals 1 if a restaurant is located in NJ and 0 if it is in PA.

minwage <- read.csv("minwage.csv")

## compute proportion of full-time employment before minimum wage increase

minwage$fullPropBefore <- minwage$fullBefore /

(minwage$fullBefore + minwage$partBefore)

## same thing after minimum-wage increase

minwage$fullPropAfter <- minwage$fullAfter /

(minwage$fullAfter + minwage$partAfter)

## an indicator for NJ: 1 if it’s located in NJ and 0 if in PA

minwage$NJ <- ifelse(minwage$location == "PA", 0, 1)

We now regress the proportion of full-time employment after the minimum-wage
increase on the treatment variable (i.e., whether a restaurant is located in NJ) as
well as on 3 other potential confounding variables. We note that chain is a factor
variable with 4 different chains of fast-food restaurants. When a factor variable is
used in the lm() function, as we saw in section 4.3.2, the function will automatically
create the appropriate number of indicator variables for each category. In this case,
since we have an intercept and the factor has 4 categories, the function will create 3
indicator variables. The lm() function by default includes an intercept. If we remove
the intercept using the -1 syntax, then it will create 1 indicator variable for each of
the four categories. As explained in section 4.3.2, these two models are equivalent and
yield an identical predicted value given the same values of the explanatory variables
while yielding different estimates of coefficients.

fit.minwage <- lm(fullPropAfter ~ -1 + NJ + fullPropBefore +

wageBefore + chain, data = minwage)

## regression result

fit.minwage

##

## Call:

## lm(formula = fullPropAfter ~ -1 + NJ + fullPropBefore + wageBefore +
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## chain, data = minwage)

##

## Coefficients:

## NJ fullPropBefore wageBefore

## 0.05422 0.16879 0.08133

## chainburgerking chainkfc chainroys

## -0.11563 -0.15080 -0.20639

## chainwendys

## -0.22013

The result shows that the minimum-wage increase in NJ raised the proportion of
full-time employees by 5.4 percentage points (represented by the estimated coefficient
for the NJ variable) after adjusting for the proportion of full-time employees and wages
before the minimum-wage increase as well as the chains of fast-food restaurants. By
excluding the intercept, we can immediately compare the estimated coefficients across
fast-food restaurant chains. We find that Burger King is predicted to have the highest
proportion of full-time employment after adjusting for the other factors in the model.
If we include an intercept, the estimated coefficients need to be interpreted relative to
the base category, which will be dropped from the regression model. The base category
of a factor variable represents a category to which the other categories of the variable
are compared.

fit.minwage1 <- lm(fullPropAfter ~ NJ + fullPropBefore +

wageBefore + chain, data = minwage)

fit.minwage1

##

## Call:

## lm(formula = fullPropAfter ~ NJ + fullPropBefore + wageBefore +

## chain, data = minwage)

##

## Coefficients:

## (Intercept) NJ fullPropBefore

## -0.11563 0.05422 0.16879

## wageBefore chainkfc chainroys

## 0.08133 -0.03517 -0.09076

## chainwendys

## -0.10451

The lm() function excluded the indicator variable for Burger King from the re-
gression, which means that the estimated coefficients for all other fast-food restaurant
chains are relative to Burger King. Consistent with the previous result, we find that
all other estimated coefficients are negative, indicating that Burger King is predicted
to have the highest proportion of full-time employment after adjusting for the other
factors in the model. We emphasize that these two models are equivalent, yielding the
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same predicted values. For example, we use the outputs of the two regression models to
predict the outcome for the first observation in the data yielding an identical predicted
value.

predict(fit.minwage, newdata = minwage[1, ])

## 1

## 0.2709367

predict(fit.minwage1, newdata = minwage[1, ])

## 1

## 0.2709367

Valid inference under the linear model assumes the exogeneity assumption given
in equation (7.22). This assumption will be violated if there exist unobserved
confounders. To make the exogeneity assumption more plausible, researchers
can measure confounding variables and include them as additional explanatory
variables in the linear regression model.

7.3.2 UNBIASEDNESS OF ESTIMATED COEFFICIENTS
How accurately can we estimate the coefficients of the linear regression model?

Under the assumption that the linear regression model actually describes the true
data-generating process, we consider the question of how to quantify the uncertainty
associated with estimated coefficients. For simplicity, let us consider the model with
one predictor only, though the results presented in this section can be generalized to
linear regression with more than one predictor:

Yi = α + βXi + εi . (7.23)

Recall from the discussion given in section 4.2.3 that if the linear regression model
contains only an intercept and one predictor, then the least squares estimates are
given by

α̂ = Y − β̂X, (7.24)

β̂ =
∑n

i=1(Yi − Y)(Xi − X)∑n
i=1(Xi − X)2

. (7.25)

In this equation, X and Y represent the sample average of the predictor Xi and the
outcome variable Yi , respectively.

It turns out that under the exogeneity assumption these least squares coefficients,
α̂ and β̂ , are unbiased for their corresponding true values, α and β , respectively.
Formally, we may write E(α̂) = α and E(β̂) = β . This means that if we generate
the data according to this linear model, the least squares estimates of the coefficients
will equal their true values, on average, across the hypothetically repeated data sets.
Thus, the method of least squares produces unbiased estimates while minimizing the
sum of squared residuals.
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For those who are mathematically inclined, we show this important result analyt-
ically. Since we assume that the linear regression model is the true data-generating
process, we substitute the linear model expression given in equation (7.23) into
equation (7.24). Noting that the average outcome is given by Y = α + βX + ε̄, we
obtain the following expression for the estimated intercept:

α̂ = α + βX + ε̄ − β̂X = α + (β − β̂)X + ε̄.

This equation shows that the estimation error α̂ − α is given by (β − β̂)X + ε̄.
Similarly, we use equation (7.23) to rewrite the estimated slope coefficient given in
equation (7.25) as the sum of the true value β and the estimation error β̂ − β :

β̂ =
∑n

i=1(βXi + εi − βX − ε̄)(Xi − X)∑n
i=1(Xi − X)2

= β +
∑n

i=1(εi − ε̄)(Xi − X)∑n
i=1(Xi − X)2︸ ︷︷ ︸
estimation error

,

where we used the fact that
∑n

i=1 βXi =∑n
i=1 βX .

We can further simplify the numerator of this estimation error, i.e., the second term
in this equation:

n∑

i=1

(εi − ε̄)(Xi − X) =
n∑

i=1

εi (Xi − X) −
n∑

i=1

ε̄(Xi − X)

=
n∑

i=1

εi (Xi − X) − ε̄

(
n∑

i=1

Xi − nX

)

︸ ︷︷ ︸
=0

=
n∑

i=1

εi (Xi − X).

Therefore, we obtain the following final expression for the estimation error of the
slope coefficient:

β̂ − β =
∑n

i=1 εi (Xi − X)∑n
i=1(Xi − X)2

. (7.26)

As discussed in section 7.1.1, to prove the unbiasedness of β̂ , we must show that
on average β̂ equals its true value β over repeated (hypothetical) data-generating
processes. Mathematically, we compute the expectation of β̂ and show it is equal
to β , i.e., E(β̂) = β . In this case, we first compute the conditional expectation of
β̂ given the explanatory variable vector X under the exogeneity assumption given in
equation (7.22), then show E(β̂ | X ) = β . This means that for a given value of X ,
we consider the hypothetical process of repeatedly generating the outcome variable Y
by sampling the error term ε independent of X and then compute the least squares
estimates α̂ and β̂ . While these estimates differ each time, on average they should equal
the true values α and β , respectively.
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We first calculate the conditional expectation of the estimated slope coefficient.
Since the expectation is computed given the predictor vector X , the only random
variable is the error term ε. This means that the other terms can be considered as
constants and taken out of the expectation:

E(β̂ − β | X ) = 1∑n
i=1(Xi − X)2

n∑

i=1

E(εi | X )(Xi − X) = 0.

The second equality is implied by the exogeneity assumption E(ε | X ) = 0. Therefore,
the estimated slope coefficient for Xi is unbiased conditional on the predictor. Using
this result, we can also show that the estimated intercept is unbiased conditional on the
predictor vector X :

E(α̂ − α | X ) = E(β̂ − β | X )X + E(ε̄ | X ) = 0.

The result follows from the fact that E(β̂ − β | X ) = 0 (unbiasedness of β̂) and
E(ε̄ | X ) = 1

n
∑n

i=1 E(εi | X ) = 0 (exogeneity). Since this means that given any
value of the predictor vector X the estimated coefficients, α̂ and β̂ , are unbiased,
conditional unbiasedness implies unbiasedness without conditioning, i.e., E(α̂) = α

and E(β̂) = β .

Under the exogeneity assumption, the least squares estimates of the coefficients in
the linear regression model are unbiased.

The argument we just made, that conditional unbiasedness of estimated coefficients
implies (unconditional) unbiasedness, can be made more generally and is called the
law of iterated expectation.

The law of iterated expectation states that for any two random variables X
and Y , the following equality holds:

E(Y) = E{E(Y | X)}.
The inner expectation averages over Y given X , yielding a function of X , and the
outer expectation averages this resulting conditional expectation function over X .

For example, let Y be an individual income and X be the racial group the individual
belongs to. Then, in order to obtain the average income in a population, we could
simply compute the mean of everyone’s income E(Y) or first compute the average
income for each racial category E(Y | X) = g (X) and then obtain the overall
mean income by calculating the weighted average of race-specific means, where the
weight is proportional to the size of racial group E(g (X)). Applying the law of iterated
expectation, we would formally conclude that the estimated coefficients are unbiased:

E(α̂) = E{E(α̂ | X )} = E(α) = α,

E(β̂) = E{E(β̂ | X )} = E(β) = β.
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7.3.3 STANDARD ERRORS OF ESTIMATED COEFFICIENTS
Now that we have established the unbiasedness of estimated coefficients, we con-

sider their standard errors. The standard error of each estimated coefficient represents
the (estimated) standard deviation of its sampling distribution (see section 7.1.2). The
sampling distribution is produced through a hypothetically repeated sampling process,
yielding different estimated coefficients across samples. The standard error quanti-
fies the average variability of the estimated coefficient over this repeated sampling
procedure.

As in the case of unbiasedness, we consider the linear regression model with one
predictor for the sake of simplicity. We derive the variance of the sampling distribution
of the estimated slope coefficient β̂ and then take its square root to obtain the standard
error. As in the case of bias, we first compute the conditional variance given the
predictor X . Recall the discussion in section 6.3.5 that the variance of a random variable
does not change even if we add a constant to it. Thus, the variance of the estimated
coefficient β̂ equals that of the estimation error β̂ − β since β is an (albeit unknown)
constant. Using equation (7.26), we obtain

V(β̂ | X ) = V(β̂ − β | X )

= V
(∑n

i=1 εi (Xi − X)∑n
i=1(Xi − X)2

∣∣∣ X
)

= 1
{∑n

i=1(Xi − X)2}2V
(

n∑

i=1

εi (Xi − X)
∣∣∣X
)

. (7.27)

The third equality follows from equation (6.38) and the fact that the denominator is a
function only of the predictor X , which is treated as a constant when computing the
conditional variance given X .

To further simplify the expression in equation (7.27), we assume homoskedasticity of
the error term. That is, we assume that, conditional on the predictor X , the error term
of observation i is independent of that of another observation, and that the variance of
the error term does not depend on the predictor X .

The assumption of homoskedastic error consists of the following two
components:

1. εi is independent of ε j conditional on X for all i �= j .
2. The variance of error does not depend on the predictor:
V(εi | X ) = V(εi ).
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Under this homoskedasticity assumption, we can further simplify the numerator of
equation (7.27):

V

(
n∑

i=1

εi (Xi − X)
∣∣∣ X
)

=
n∑

i=1

V(εi | X )(Xi − X)2 = V(εi )
n∑

i=1

(Xi − X)2. (7.28)

Putting this together with equation (7.27), we arrive at the following variance of the
estimated slope coefficient β̂ under the homoskedasticity and exogeneity assumptions:

V(β̂ | X ) = V(εi )∑n
i=1(Xi − X)2

. (7.29)

Although the above expression represents the conditional variance of β̂ given the
predictor X , we can also compute the unconditional variance of β̂ . The former is
based on the variability of β̂ under the hypothetical scenario of repeated sampling
of Yi given Xi (or equivalently εi given Xi because Yi is a function of Xi and εi ) for
each observation, where Xi is fixed throughout. In contrast, the latter represents the
uncertainty of β̂ under a somewhat more natural data-generating process where Yi
and Xi (or equivalently εi and Xi ) are jointly sampled from the population for each
hypothetical realization of the data. To derive the unconditional variance of β̂ , we use
the following law of total variance.

The law of total variance states that for any two random variables X and Y the
following equality holds:

V(Y) = V{E(Y | X)} + E{V(Y | X)}.
The first term represents the variance of conditional expectation and the second
term represents the expectation of conditional variance.

In words, this law implies that the unconditional variance of random variable Y is
equal to the sum of the variance of the conditional expectation of Y given X and the
expectation of the conditional variance ofY given X . Applying the law of total variance,
we can show that the unconditional variance of β̂ can be derived as

V(β̂) = V(E(β̂ | X )) + E{V(β̂ | X )}

= V(β)︸︷︷︸
=0

+E
(

V(εi )∑n
i=1(xi − X)2

)

= V(εi )E
[

1∑n
i=1(Xi − X)2

]
. (7.30)

In the above equation, V(β) = 0 because β is a constant. This implies that the
unconditional variance of β̂ is equal to the expected value of the conditional variance
of β̂ , i.e., V(β̂) = E{V(β̂ | X )}. Thus, a good estimate of the conditional variance is
also a good estimate of the unconditional variance.

Given this result, under the assumption of homoskedastic error, we can com-
pute the standard error of β̂ as an estimate of the unconditional variance given in
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equation (7.30). We do this by first estimating V(εi ) using the sample variance of
residuals ε̂i = Yi − α̂ − β̂Xi , and then taking the square root of it. That is, if we
denote the estimated conditional variance bŷV(β̂), then the standard error of β̂ is

standard error of β̂ =
√
̂
V(β̂) =

√
1
n
∑n

i=1 ε̂2i∑n
i=1(Xi − X)2

. (7.31)

When estimating V(εi ), we used the fact that the sample mean of residuals is always
zero,3 i.e., 1

n
∑n

i=1(ε̂i − ¯̂ε)2 = 1
n
∑n

i=1 ε̂2i .
Finally, the standard errors derived above are based on the assumption of ho-

moskedastic errors. If this assumption is violated, then the calculation of standard
errors needs to be adjusted. For example, in randomized controlled trials, the variance
may differ for the treatment and control groups. In fact, when we computed the
standard error for the difference-in-means estimator, we separately calculated
the variance for each group (see equation (7.18)). If the error variance depends on the
predictor, we say that error is heteroskedastic. Although beyond the scope of this book,
there are various ways to compute the standard errors that account for heteroskedastic
errors. They are called heteroskedasticity-robust standard errors.

7.3.4 INFERENCE ABOUT COEFFICIENTS
Given the standard error derived above, we can compute the confidence intervals

following the procedure described in section 7.1.3. Specifically, using the central limit
theorem, we can show that as the sample size increases, the sampling distribution of β̂
approaches a normal distribution centered around the mean:

z-score of β̂ = β̂ − β

standard error of β̂

approx.∼ N (0, 1). (7.32)

Therefore, we can use the critical values based on the standard normal distribution to
construct the (1 − α) × 100% level confidence interval below:

CI(α) = [β̂ − zα/2 × standard error, β̂ + zα/2 × standard error]. (7.33)

We can also conduct a hypothesis test for the slope coefficient. For example, we
can test the null hypothesis that the slope coefficient is equal to a particular value β0.
Most often, researchers use zero as the true value under the null hypothesis and ask
whether or not the true coefficient for the predictor is equal to zero, i.e., β0 = 0. Under
the general hypothesis-testing framework developed in section 7.2, our null hypothesis
is H0 : β = β0. The test statistic is the z-score, i.e., z∗ = (β̂ − β0)/standard error,
and the sampling distribution of this test statistic z∗ under the null hypothesis is the
standard normal distribution. Therefore, we can compute the p-value using the CDF
of the standard normal distribution. For example, the two-sided p-value is given by
2 × P (Z ≤ z∗), where Z is a standard normal random variable.

3 Since the expectation of the error term is also zero and hence does not need to be estimated, we divide the
sum of squared residuals by n instead of n − 1 often used for the sample variance calculation (see the discussion
in section 2.6.2).
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Just as for the analysis of randomized experiments, researchers often use a more
conservative confidence interval based on Student’s t-distribution (see section 7.1.5).
Technically, if we make an additional assumption that the error term is normally
distributed with mean zero and homoskedastic variance, then the sampling dis-
tribution of z∗, which is called the t-statistic in this setting, is given by, without
approximation, Student’s t-distribution with n − 2 degrees of freedom. This contrasts
with the asymptotic approximation based on the standard normal distribution without
assuming a particular distribution for the error term. The degrees of freedom are
n − 2 because two parameters, α and β , are estimated from the data. Since Student’s
t-distribution has thicker tails than the standard normal distribution, we will have a
greater critical value and as a result, obtain a wider confidence interval and a greater
p-value.

As the first example to illustrate the results described above, we revisit the random-
ized experiment from chapter 4, examining the effects of women as policy makers in
India (see section 4.3.1). The data set we analyze is contained in women.csv and the
variable names and descriptions are given in table 4.7. Recall that after loading the data
set from this study as a data frame women, we regressed the number of drinking water
facilities in a village, water, on a binary variable reserved, indicating whether each
GP is reserved for women. Conveniently, in R, all of the necessary information can be
obtained by applying the summary() function to the output from the lm() function,
which fits a linear regression model.

women <- read.csv("women.csv")

fit.women <- lm(water ~ reserved, data = women)

summary(fit.women)

##

## Call:

## lm(formula = water ~ reserved, data = women)

##

## Residuals:

## Min 1Q Median 3Q Max

## -23.991 -14.738 -7.865 2.262 316.009

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 14.738 2.286 6.446 4.22e-10 ***
## reserved 9.252 3.948 2.344 0.0197 *
## ---

## Signif. codes:

## 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Residual standard error: 33.45 on 320 degrees of freedom

## Multiple R-squared: 0.01688,Adjusted R-squared: 0.0138

## F-statistic: 5.493 on 1 and 320 DF, p-value: 0.0197
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We find that the point estimate of the slope coefficient is 9.252 and its standard
error is 3.948. This output uses a conservative confidence interval based on Student’s
t-distribution. The t-statistic for the estimated slope coefficient is, therefore, 2.344.
If the null hypothesis is that the slope coefficient is zero, then the two-sided p-
value can be computed using Student’s t-distribution with 320 degrees of freedom
because the sample size is 322. In the summary output, this p-value is shown to be
0.0197. Therefore, using the α = 0.05 level of statistical significance, we reject the null
hypothesis that the slope coefficient is zero. The asterisks in the summary output
indicate the level of statistical significance. We can compute confidence intervals using
the confint() function, where the default significance level is 0.05. The level of
statistical significance can be changed with the level argument.

confint(fit.women) # 95% confidence intervals

## 2.5 % 97.5 %

## (Intercept) 10.240240 19.23640

## reserved 1.485608 17.01924

The result suggests that having the GP reserved for women is estimated to increase
the number of drinking water facilities by 9.25 facilities with a 95% confidence interval
of [1.49, 17.02]. As expected, we observe that the 95% confidence interval does not
contain zero.

While the mathematical derivation is beyond the scope of this book, we can also
compute the standard error and confidence interval of the estimated coefficients in
a more general setting with multiple predictors. The summary() function can be
applied to the output of the lm() function even with multiple predictors. For example,
we can summarize the results of the linear regression model fitted to the minimum-
wage data earlier in section 7.3.1.

summary(fit.minwage)

##

## Call:

## lm(formula = fullPropAfter ~ -1 + NJ + fullPropBefore + wageBefore +

## chain, data = minwage)

## Residuals:

## Min 1Q Median 3Q Max

## -0.48617 -0.18135 -0.02809 0.15127 0.75091

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## NJ 0.05422 0.03321 1.633 0.10343

## fullPropBefore 0.16879 0.05662 2.981 0.00307 **

## wageBefore 0.08133 0.03892 2.090 0.03737 *

## chainburgerking -0.11563 0.17888 -0.646 0.51844



7.3 Linear Regression Model with Uncertainty 383

## chainkfc -0.15080 0.18310 -0.824 0.41074

## chainroys -0.20639 0.18671 -1.105 0.26974

## chainwendys -0.22013 0.18840 -1.168 0.24343

## ---

## Signif. codes:

## 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Residual standard error: 0.2438 on 351 degrees of freedom

## Multiple R-squared: 0.6349,Adjusted R-squared: 0.6277

## F-statistic: 87.21 on 7 and 351 DF, p-value: < 2.2e-16

The summary output contains the relevant information for each of the estimated
coefficients. In this observational study, we are interested in the average effect of
increasing the minimum wage in NJ, which corresponds to the coefficient of the NJ
variable. Thus, the average effect of the minimum-wage increase on the proportion of
full-time employees in NJ is estimated to be 5.4 percentage points with a standard error
of 3.3 percentage points. According to the result, we fail to reject the null hypothesis
that the average effect of theminimum-wage increase is zero. In other words, we cannot
preclude the possibility that the nonzero point estimate we obtained may be due to
the sampling error under the scenario that the minimum-wage increase did not, on
average, change the proportion of full-time employment. The p-values in this case are
based on Student’s t-distribution with 351 degrees of freedom because we have a total
of 358 observations and 7 parameters to be estimated. To obtain the 95% confidence
interval for this estimate, we can use the confint() function as before.

## confidence interval just for the “NJ” variable

confint(fit.minwage)["NJ", ]

## 2.5 % 97.5 %

## -0.01109295 0.11953297

As expected, the confidence interval contains zero, consistent with the result of the
hypothesis test. However, a large portion of the confidence interval contains positive
values, providing evidence that the minimum-wage increase in NJ may not have
decreased the proportion of full-time employment.

The above summary output presents various other statistics. They include the
residual standard error, which is the sample standard deviation of residuals. Since
there are (p + 1) parameters to be estimated, the number of degrees of freedom equals
(n − p − 1) instead of the usual (n − 1) used when computing average. The residual
standard error represents the average magnitude of residuals under the fitted model.
The output also includes R2, or the coefficient of determination, which represents the
proportion of explained variation in the outcome (see section 4.2.6). As explained in
section 4.3.2, the adjusted R2 includes the adjustment due to the number of degrees of
freedom, penalizing models with large numbers of predictors.
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7.3.5 INFERENCE ABOUT PREDICTIONS
As shown in chapter 4, one of the main advantages of regression modeling is its

ability to predict outcomes of interest. In the case of linear regression models, once
we estimate the coefficients, we can use the model to predict an outcome variable
given the values of the predictors in the model. Below, we show how to compute the
standard error and construct confidence intervals for a prediction based on the linear
regression model.

For the sake of simplicity, consider the linear regression model with a single
predictor, i.e., Yi = α + βXi + εi . We are interested in obtaining the standard error of
the predicted value from this model when the predictor X takes a particular value x:

Ŷ = α̂ + β̂x.

To derive the variance of the predicted value Ŷ , we must recognize the fact that α̂

and β̂ are possibly correlated with each other. When two random variables, X and
Y , are correlated, the variance of their sum is not equal to the sum of their variances.
Instead, the variance of their sum includes their covariance, defined as follows.

Let X and Y be random variables. Their covariance is defined as
Cov(X,Y) = E{(X − E(X))(Y − E(Y))}

= E(XY) − E(X)E(Y).
The correlation, a standardized version of covariance, is given by

Cor(X,Y) = Cov(X,Y)√
V(X)V(Y)

.

Sample correlation, or the correlation of a sample, was introduced in chapter 3
(see section 3.6.2). If the two random variables are independent of each other,
their covariance and correlation are zero. In addition, the general formula for the
variance of the sum of two (possibly dependent) random variables is given as

V(X + Y) = V(X) + V(Y) + 2 Cov(X,Y).
More generally,

V(aX + bY + c) = a2V(X) + b2(Y) + 2ab Cov(X,Y)
where a, b, c are constants.

Since α̂ and β̂ may not be independent, using the general formula introduced above,
we obtain the following variance of predicted value Ŷ when the predictor X equals a
particular value x:

V(Ŷ) = V(α̂ + β̂x) = V(α̂) + V(β̂)x2 + 2x Cov(α̂, β̂).

We can compute the standard error by estimating each component of this variance and
then taking the square root of the estimated variance of Ŷ :

standard error of Ŷ =
√
V̂(α̂) +̂V(β̂)x2 + 2x ̂Cov(α̂, β̂).
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Once the standard error is calculated, we can apply the central limit theorem to
approximate the sampling distribution of the z-score for the predicted value Ŷ using
the standard normal distribution:

z-score of Ŷ = Ŷ − (α + βx)
standard error of Ŷ

approx.∼ N (0, 1). (7.34)

From this result, we can obtain a confidence interval and conduct a hypothesis test for
a selected level of statistical significance.

As an example of inference with prediction, we revisit the regression discontinuity
design introduced in section 4.3.4. In that study, we estimated the average effect
of winning an election on a candidate’s wealth in the United Kingdom. Instead of
comparing members of Parliament (MPs) who won an election with those who lost it,
researchers focused on those who narrowly won or narrowly lost an election. The idea
was that if winning an election has a large effect on one’s wealth, we should expect a
substantial gap in the average wealth at the winning threshold, i.e., the winning margin
of zero. Two linear regression models were used to predict the average wealth at this
threshold, one based on narrow winners and the other fitted to narrow losers. Here, we
reproduce the regression analysis conducted in section 4.3.4 separately for the Labour
and Tory Parties.

## load the data and subset them into two parties

MPs <- read.csv("MPs.csv")

MPs.labour <- subset(MPs, subset = (party == "labour"))

MPs.tory <- subset(MPs, subset = (party == "tory"))

## two regressions for Labour: negative and positive margin

labour.fit1 <- lm(ln.net ~ margin,

data = MPs.labour[MPs.labour$margin < 0, ])

labour.fit2 <- lm(ln.net ~ margin,

data = MPs.labour[MPs.labour$margin > 0, ])

## two regressions for Tory: negative and positive margin

tory.fit1 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])

tory.fit2 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin > 0, ])

The average treatment effect of winning an election results from predicting the
average wealth at the winning threshold, i.e., a winning margin of zero. The confidence
interval on the predicted value from each regression can be obtained by setting the
interval argument in the predict() function to "confidence" rather than to
"none", which is the default. Note that as in the confint() function, the level of
statistical significance can be selected by setting the level argument to a desired value
(the default is 0.95). We focus on the Tory Party here.

## Tory Party: prediction at the threshold

tory.y0 <- predict(tory.fit1, interval = "confidence",

newdata = data.frame(margin = 0))
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tory.y0

## fit lwr upr

## 1 12.53812 12.11402 12.96221

tory.y1 <- predict(tory.fit2, interval = "confidence",

newdata = data.frame(margin = 0))

tory.y1

## fit lwr upr

## 1 13.1878 12.80691 13.56869

In this output, the predicted value is given by fit and the lower and upper
confidence bands are denoted by lwr and upr, respectively. For example, the average
net wealth for non-MPs at the threshold is estimated to be 12.54 log net wealth with a
95% confidence interval of [12.11, 12.96]. Similarly, the average net wealth for MPs at
the threshold is estimated to be 13.19 log net wealth with a 95% confidence interval of
[12.81, 13.57]. The following code chunk plots these two regression lines (solid lines)
with their 95% confidence intervals (dashed lines), using the range of predictor x. To
do this, we first define the two ranges of the electoral margin and then compute the
predictions for each range with 95% confidence intervals.

## range of predictors; min to 0 and 0 to max

y1.range <- seq(from = 0, to = min(MPs.tory$margin), by = -0.01)

y2.range <- seq(from = 0, to = max(MPs.tory$margin),by = 0.01)

## prediction using all the values

tory.y0 <- predict(tory.fit1, interval = "confidence",

newdata = data.frame(margin = y1.range))

tory.y1 <- predict(tory.fit2, interval = "confidence",

newdata = data.frame(margin = y2.range))

Finally, we plot the results where the solid lines represent the predicted values and
the dashed lines represent the confidence intervals.

## plotting the first regression with losers

plot(y1.range, tory.y0[, "fit"], type = "l", xlim = c(-0.5, 0.5),

ylim = c(10, 15), xlab = "Margin of victory", ylab = "log net wealth")

abline(v = 0, lty = "dotted")

lines(y1.range, tory.y0[, "lwr"], lty = "dashed") # lower CI

lines(y1.range, tory.y0[, "upr"], lty = "dashed") # upper CI

## plotting the second regression with winners

lines(y2.range, tory.y1[, "fit"], lty = "solid") # point estimates

lines(y2.range, tory.y1[, "lwr"], lty = "dashed") # lower CI

lines(y2.range, tory.y1[, "upr"], lty = "dashed") # upper CI
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In the plot, we observe that the width of the confidence interval widens as it moves
away from the mean value of the predictor. While these two confidence intervals
overlap with each other, what we really would like to do is to compute the confidence
interval for the difference between these two predicted values. This is because the
difference between the two predicted values represents the estimated average treatment
effect at the threshold under the regression discontinuity design. Moreover, these
two predicted values are assumed to be independent because they are based on two
regression models that are fitted to two separate sets of observations. This means that
the variance of the difference is the sum of the two variances. To compute the standard
error of the difference in the predicted values, we obtain the standard error from each
fitted regression. We then use the following formula to compute the standard error of
the estimated difference:

standard error of (Ŷ1 − Ŷ0) =
√

(standard error of Ŷ1)2 + (standard error of Ŷ0)2.

In R, we obtain the standard error of a predicted value by setting the se.fit
argument to TRUE. There are multiple elements in the output list of the predict()
function when using this standard error option. Each element can be extracted from
this list by using the symbol $.

## recompute the predicted value and return standard errors

tory.y0 <- predict(tory.fit1, interval = "confidence", se.fit = TRUE,

newdata = data.frame(margin = 0))

tory.y0

## $fit

## fit lwr upr

## 1 12.53812 12.11402 12.96221
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##

## $se.fit

## [1] 0.2141793

##

## $df

## [1] 119

##

## $residual.scale

## [1] 1.434283

tory.y1 <- predict(tory.fit2, interval = "confidence", se.fit = TRUE,

newdata = data.frame(margin = 0))

Since in this case the predicted value equals the estimated intercept, the standard
error one obtains through the predict() function is equal to the standard error of
the intercept in the summary output.

## s.e. of the intercept is the same as s.e. of the predicted value

summary(tory.fit1)

##

## Call:

## lm(formula = ln.net ~ margin, data = MPs.tory[MPs.tory$margin <

## 0, ])

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.3195 -0.4721 -0.0349 0.6629 3.5798

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.5381 0.2142 58.540 <2e-16 ***

## margin 1.4911 1.2914 1.155 0.251

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.434 on 119 degrees of freedom

## Multiple R-squared: 0.01108, Adjusted R-squared: 0.002769

## F-statistic: 1.333 on 1 and 119 DF, p-value: 0.2506

We can now compute the standard error of the estimated difference in the average
log net wealth between MPs and non-MPs at the winning threshold. Using this
standard error, we compute the confidence interval and conduct a hypothesis test
for which the null hypothesis is that winning an election has zero average effect on
candidates’ net log wealth.
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## standard error

se.diff <- sqrt(tory.y0$se.fit^2 + tory.y1$se.fit^2)

se.diff

## [1] 0.2876281

## point estimate

diff.est <- tory.y1$fit[1, "fit"] - tory.y0$fit[1, "fit"]

diff.est

## [1] 0.6496861

## confidence interval

CI <- c(diff.est - se.diff * qnorm(0.975), diff.est + se.diff * qnorm(0.975))

CI

## [1] 0.0859455 1.2134268

## hypothesis test

z.score <- diff.est / se.diff

p.value <- 2 * pnorm(abs(z.score), lower.tail = FALSE) # two-sided p-value

p.value

## [1] 0.02389759

We find that even though the confidence intervals of the two estimates overlap
with each other, the difference between these two estimates is statistically significantly
different from zero. Indeed, the average effect of winning an election is estimated
to be 0.65 net log wealth with a 95% confidence interval of [0.09, 1.21], which does
not contain zero. As a result, the two-sided p-value is less than the conventional
statistical significance level, 0.05, allowing us to reject the null hypothesis of zero
average effect. Thus, our analysis suggests that winning an election had a positive
impact on candidates’ net wealth. The overlap of the confidence intervals of the two
estimates does not necessarily imply that the confidence interval of the difference
between the two estimates contains zero.

7.4 Summary

In this chapter, we introduced a framework for methods of statistical inference that
enables us to quantify the degree of uncertainty regarding our estimates. While we
can never know how close our estimates are to the unknown truth, we can evaluate
the performance of our estimators using a hypothetically repeated randomization of
treatment assignment and/or repeated random sampling. We introduced the concept
of unbiasedness. An unbiased estimator accurately estimates the parameter of interest
on average over a hypothetically repeated data-generating process. Using the law
of large numbers, we can also show that some estimators have the property of
consistency, which implies that as the sample size increases, they converge to the true
parameter values.
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While unbiasedness is an attractive property, we also need to understand the
precision of an estimator given that we can obtain only one realization of the estimator.
We use standard error to quantify how far our estimator is from the true parameter
value on average over a repeated data-generating process. Standard error is an estimate
of the standard deviation of the sampling distribution of an estimator. Based on
standard errors, we can also construct confidence intervals, which will contain the true
parameter values with a prespecified probability, again over a repeated data-generating
process. We also showed how to conduct a statistical hypothesis test by specifying a
null hypothesis and examining whether or not the observed data are consistent with
this hypothesis. We applied these inferential methods to the analysis of randomized
experiments and sample surveys from earlier in this book.

Finally, we introduced model-based inference. We used a linear regression model
as a probabilistic generative model, from which the data are assumed to be drawn.
Under this setting, we can quantify the uncertainty of our estimated coefficients
and predicted values. We showed that the least squares estimates of coefficients are
unbiased and derived their standard errors. Using these results, we also explained
how to construct confidence intervals and conduct hypothesis tests. Similarly, we
showed how to quantify the uncertainty about our predicted values and applied the
methodology to the regression discontinuity design introduced in an earlier chapter.
These statistical methods play an essential role in our inference because they enable us
to separate signals from noise, extracting systematic patterns from data.

7.5 Exercises

7.5.1 SEX RATIO AND THE PRICE OF AGRICULTURAL CROPS IN CHINA
In this exercise, we consider the effect of a change in the price of agricultural goods

whose production and cultivation are dominated by either men or women.4 Our data
come from China, where centrally planned production targets during the Maoist era
led to changes in the prices of major staple crops. We focus here on tea, the production
and cultivation of which required a large female labor force, as well as orchard fruits,
for which the labor force was overwhelmingly male. We use price increases brought on
by government policy change in 1979 as a proxy for increases in sex-specific income,
and ask the following question: Do changes in sex-specific income alter the incentives
for Chinese families to have children of one gender over another? The CSV data file,
chinawomen.csv, contains the variables shown in table 7.4, with each observation
representing a particular Chinese county in a given year. Note that post is an indicator
variable that takes the value 1 in a year following the policy change and 0 in a year
before the policy change.

1. We begin by examining sex ratios in the postreform period (i.e., the period
after 1979) according to whether or not tea crops were sown in the region.

4 This exercise is based on Nancy Qian (2008) “Missing women and the price of tea in China: The effect of
sex-specific earnings on sex imbalance.” Quarterly Journal of Economics, vol. 123, no. 3, pp. 1251–1285.
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Table 7.4. Chinese Births and Crops Data.

Variable Description

admin unique county identifier
birpop birth population in a given year
biryr year of cohort (birth year)
cashcrop quantity of cash crops planted in the county
orch quantity of orchard-type crops planted in the county
teasown quantity of tea sown in the county
sex proportion of males in the birth cohort
post indicator variable for the introduction of price reforms

Estimate the mean sex ratio in 1985, which we define as the proportion of male
births, separately for tea-producing and non-tea-producing regions. Compute
the 95% confidence interval for each estimate by assuming independence across
counties within a year. Note that we will maintain this assumption throughout
this exercise. Furthermore, compute the difference-in-means between the two
regions and its 95% confidence interval. Are sex ratios different across these
regions? What assumption is required in order for us to interpret this difference
as causal?

2. Repeat the analysis in the previous question for subsequent years, i.e., 1980, 1981,
1982, . . . , 1990. Create a graph which plots the difference-in-means estimates and
their 95% confidence intervals against years. Give a substantive interpretation of
the plot.

3. Next, we compare tea-producing and orchard-producing regions before the
policy enactment. Specifically, we examine the sex ratio and the proportion of
Han Chinese in 1978. Estimate the mean difference, its standard error, and
95% confidence intervals for each of these measures between the two regions.
What do the results imply about the interpretation of the results given in
question 1?

4. Repeat the analysis for the sex ratio in the previous question for each year before
the reform, i.e., from 1962 until 1978. Create a graph which plots the difference-
in-means estimates between the two regions and their 95% confidence intervals
against years. Give a substantive interpretation of the plot.

5. We will adopt the difference-in-differences design by comparing the sex ratio
in 1978 (right before the reform) with that in 1980 (right after the reform).
Focus on a subset of counties that do not have missing observations in these
two years. Compute the difference-in-differences estimate and its 95% confidence
interval. Note that we assume independence across counties but account for
possible dependence across years within each county. Then, the variance of the
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difference-in-differences estimate is given by

V{(Y tea,after − Y tea,before) − (Yorchard,after − Yorchard,before)}
= V(Y tea,after − Y tea,before) + V(Yorchard,after − Yorchard,before),

where dependence across years is given by

V(Y tea,after − Y tea,before)

= V(Y tea,after) − 2Cov(Y tea,after,Y tea,before) + V(Y tea,before)

= 1
n
{
V(Ytea,after) − 2Cov(Ytea,after,Ytea,before) + V(Ytea,before)

}
.

A similar formula can be given for orchard-producing regions. What substantive
assumptions does the difference-in-differences design require? Give a substantive
interpretation of the results.

7.5.2 FILE DRAWER AND PUBLICATION BIAS IN ACADEMIC RESEARCH
The peer review process is the main mechanism through which scientific commu-

nities decide whether a research paper should be published in academic journals.5 By
having other scientists evaluate research findings, academic journals hope to maintain
the quality of their published articles. However, some have warned that the peer review
process may yield undesirable consequences. In particular, the process may result
in publication bias wherein research papers with statistically significant results are
more likely to be published. To make matters worse, by being aware of such a bias
in the publication process, researchers may be more likely to report findings that are
statistically significant and ignore others. This is called file drawer bias.

In this exercise, we will explore these potential problems using data on a subset
of experimental studies that were funded by the Time-Sharing Experiments in the
Social Sciences (TESS) program. This program is sponsored by the National Science
Foundation (NSF). The data set necessary for this exercise can be found in the CSV
files filedrawer.csv and published.csv. The filedrawer.csv file contains
information about 221 research projects funded by the TESS program. However, not
all of those projects produced a published article. The published.csv file contains
information about 53 published journal articles based on TESS projects. This data set
records the number of experimental conditions and outcomes and how many of them
are actually reported in the published article. Tables 7.5 and 7.6 present the names and
descriptions of the variables from these data sets.

1. We begin by analyzing the data contained in the filedrawer.csv file. Create
a contingency table for the publication status of papers and the statistical

5 This exercise is based on the following studies: Annie Franco, Neil Malhotra, and Gabor Simonovits (2014)
“Publication bias in the social sciences: Unlocking the file drawer.” Science, vol. 345, no. 6203, pp. 1502–1505
and Annie Franco, Neil Malhotra, and Gabor Simonovits (2015) “Underreporting in political science survey
experiments: Comparing questionnaires to published results.” Political Analysis, vol. 23, pp. 206–312.
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Table 7.5. File Drawer and Publication Bias Data I.

Variable Description

id study identifier
DV publication status
IV statistical significance of the main findings
max.h H-index (highest among authors)
journal discipline of the journal for published articles

Table 7.6. File Drawer and Publication Bias Data II.

Variable Description

id.p paper identifier
cond.s number of conditions in the study
cond.p number of conditions presented in the paper
out.s number of outcome variables in the study
out.p number of outcome variables used in the paper

significance of their main findings. Do we observe any distinguishable trend
towards the publication of strong results? Provide a substantive discussion.

2. We next examine whether there exists any difference in the publication rate of
projects with strong versus weak results as well as with strong versus null results.
To do so, first create a variable that takes the value of 1 if a paper was published
and 0 if it was not published. Then, perform two-tailed tests of the difference in
the publication rates for the aforementioned comparisons of groups, using 95%
as the significance level. Briefly comment on your findings.

3. Using Monte Carlo simulations, derive the distribution of the test statistic under
the null hypothesis of no difference for each of the two comparisons you made
in the previous question. Do you attain similar p-values (for a two-tailed test) to
those obtained in the previous question?

4. Conduct the following power analysis for a one-sided hypothesis test where the
null hypothesis is that there is no difference in the publication rate between the
studies with strong results and those with weak results. The alternative hypothesis
is that the studies with strong results are less likely to be published than those with
weak results. Use 95% as the significance level and assume that the publication
rate for the studies with weak results is the same as the observed publication rate
for those studies in the data. How many studies do we need in order to detect
a 5 percentage point difference in the publication rate and for the test to attain
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a power of 95%? For the number of observations in the data, what is the power of
the test of differences in the publication rates?

5. The H-index is a measure of the productivity and citation impact of each
researcher in terms of publications. More capable researchers may produce
stronger results. To shed more light on this issue, conduct a one-sided test for the
null hypothesis that the mean H-index is lower or equal for projects with strong
results than those with null results. What about the comparison between strong
versus weak results? Do your findings threaten those presented for question 2?
Briefly explain.

6. Next, we examine the possibility of file drawer bias. To do so, we will use two
scatter plots, one that plots the total number of conditions in a study (horizontal
axis) against the total number of conditions included in the paper (vertical axis).
Make the size of each dot proportional to the number of corresponding studies,
via the cex argument. The second scatter plot will focus on the number of
outcomes in the study (horizontal axis) and the number of outcomes presented in
the published paper (vertical axis). As in the previous plot, make sure each circle
is weighted by the number of cases in each category. Based on these plots, do you
observe problems in terms of underreporting?

7. Create a variable that represents the total number of possible hypotheses to be
tested in a paper by multiplying the total number of conditions and outcomes
presented in the questionnaires. Suppose that these conditions yield no difference
in the outcome. What is the average (per paper) probability that at the 95%
significance level we reject at least one null hypothesis? What about the average
(per paper) probability that we reject at least two or three null hypotheses? Briefly
comment on the results.

7.5.3 THE 1932 GERMAN ELECTION IN THE WEIMAR REPUBLIC
Who voted for the Nazis? Researchers attempted to answer this question by

analyzing aggregate election data from the 1932 German election during the Weimar
Republic.6 We analyze a simplified version of the election outcome data, which records,
for each precinct, the number of eligible voters as well as the number of votes for the
Nazi party. In addition, the data set contains the aggregate occupation statistics for
each precinct. Table 7.7 presents the variable names and descriptions of the CSV data
file nazis.csv. Each observation represents a German precinct.

The goal of the analysis is to investigate which types of voters (based on their
occupation category) cast ballots for the Nazi party in 1932. One hypothesis says that
the Nazis received much support from blue-collar workers. Since the data do not
directly tell us how many blue-collar workers voted for the Nazis, we must infer this

6 This exercise is based on the following article: G. King, O. Rosen, M. Tanner, A.F. Wagner (2008) “Ordinary
economic voting behavior in the extraordinary election of Adolf Hitler.” Journal of Economic History, vol. 68,
pp. 951–996.
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Table 7.7. 1932 German Election Data.

Variable Description

shareself proportion of self-employed potential voters
shareblue proportion of blue-collar potential voters
sharewhite proportion of white-collar potential voters
sharedomestic proportion of domestically employed potential voters
shareunemployed proportion of unemployed potential voters
nvoter number of eligible voters
nazivote number of votes for Nazis

information using a statistical analysis with certain assumptions. Such an analysis,
where researchers try to infer individual behaviors from aggregate data, is called
ecological inference.

To think about ecological inference more carefully in this context, consider the
following simplified table for each precinct i .

Occupation
Blue-collar Non-blue-collar

Vote choice
Nazis Wi1 Wi2 Yi
Other parties 1 − Wi1 1 − Wi2 1 − Yior abstention

Xi 1 − Xi

The data at hand tells us only the proportion of blue-collar voters Xi and the vote share
for the Nazis Yi in each precinct, but we would like to know the Nazi vote share among
the blue-collar voters Wi1 and among the non-blue-collar voters Wi2. Then, there is a
deterministic relationship between X , Y , and {W1,W2}. Indeed, for each precinct i , we
can express the overall Nazi vote share as the weighted average of the Nazi vote share
of each occupation:

Yi = XiWi1 + (1 − Xi )Wi2. (7.35)

1. We exploit the linear relationship between the Nazi vote share Yi and the
proportion of blue-collar voters Xi given in equation (7.35) by regressing the
former on the latter. That is, fit the following linear regression model:

E(Yi | Xi ) = α + βXi . (7.36)

Compute the estimated slope coefficient, its standard error, and the 95% confi-
dence interval. Give a substantive interpretation of each quantity.

2. Based on the fitted regression model from the previous question, predict the
average Nazi vote share Yi given various proportions of blue-collar voters Xi .
Specifically, plot the predicted value of Yi (the vertical axis) against various values
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of Xi within its observed range (the horizontal axis) as a solid line. Add 95%
confidence intervals as dashed lines. Give a substantive interpretation of the plot.

3. Fit the following alternative linear regression model:

E(Yi | Xi ) = α∗Xi + (1 − Xi )β∗. (7.37)

Note that this model does not have an intercept. How should one interpret α∗

and β∗? How are these parameters related to the linear regression model given in
equation (7.36)?

4. Fit a linear regression model where the overall Nazi vote share is regressed
on the proportion of each occupation. The model should contain no intercept
and 5 predictors, each representing the proportion of a certain occupation type.
Interpret the estimate of each coefficient and its 95% confidence interval. What
assumption is necessary to permit your interpretation?

5. Finally, we consider amodel-free approach to ecological inference. That is, we ask
how much we can learn from the data alone without making an additional mod-
eling assumption. Given the relationship in equation (7.35), for each precinct,
obtain the smallest value that is logically possible for Wi1 by considering the
scenario in which all non-blue-collar voters in precinct i vote for the Nazis.
Express this value as a function of Xi and Yi . Similarly, what is the largest
possible value for Wi1? Calculate these bounds, keeping in mind that the value
for Wi1 cannot be negative or greater than 1. Finally, compute the bounds for
the nationwide proportion of blue-collar voters who voted for the Nazis (i.e.,
combining the blue-collar voters from all precincts by computing their weighted
average based on the number of blue-collar voters). Give a brief substantive
interpretation of the results.
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Next

Statistics are no substitute for judgment.
— Henry Clay

What comes next? There are several directions one could take in order to further
improve data analysis skills. The current book is a first course in applied data analysis
and introduces only a tiny fraction of useful data analytic methods. There is much
more to learn. An obvious next step is to learn more about data analysis and statistics.
For example, one might enroll in a second course in data analysis and statistics
(or read a relevant textbook) that covers regression modeling techniques, which are
essential tools for quantitative social science. Another possibility is to take a course on
specific topics of interest, such as causal inference, social network analysis, and survey
methodology.

As an introduction to quantitative social science, this book does not take a math-
ematical approach to data analysis. Instead, the focus of the book is to give readers
a sense of how data analysis is used in quantitative social science research, while
teaching elementary concepts and methods. But since all of data analysis and statistical
methods have a mathematical foundation, a deeper understanding of them requires a
good command of mathematics. A better grasp of methods will, in turn, enable one
to become a more sophisticated user of data analysis and statistics who can critically
assess the advantages and limitations of various methodologies in applied research.
Furthermore, if one is interested in becoming a methodologist who develops new
methods, a solid foundation in mathematics is critical. In particular, it is essential to
learn multivariate calculus and linear algebra, followed by probability theory. After
these foundations, students can learn statistical theory and various modeling strategies
in a rigorous fashion.

Since the main focus of this book is data analysis, we did not discuss how to
collect data—yet without data collection, there would be no data analysis. Although
we analyzed the data from several randomized controlled trials in this book, little
attention was given to experimental designs. How should we recruit subjects when
conducting an experiment? What are the experimental design strategies one could
use in order to obtain precise estimates of causal effects? These and other questions
arise when designing experiments in the laboratory and field. A pioneer statistician,
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Ronald A. Fisher, once stated, “To call in the statistician after the experiment is done
may be no more than asking him to perform a postmortem examination: he may be
able to say what the experiment died of.”1 We must learn how to design randomized
experiments in order to take advantage of this powerful tool for causal inference. Even
for observational studies, careful planning is required in order to identify the instances
in which researchers can draw causal inference in a credible manner. Research design
forms a fundamental component of quantitative social science research.

Similarly, while we analyze survey data in this book, we do not examine survey sam-
pling strategy and questionnaire design. In many cases, the simple random sampling
we discussed is not feasible, because we do not have a sampling frame that contains
a complete list of all individuals of a target population. For example, when studying
a population that is difficult to reach (e.g., homeless people, seasonal migrants), other
strategies, such as respondent-driven sampling, have been used. Another important
question is how to correct for the lack of representativeness in survey data. In
particular, Internet surveys are now commonly used, but an online panel is often far
from being representative of a target population. Questionnaire design also plays an
essential role in obtaining accurate measurements. In chapter 3, we saw examples of a
special technique for eliciting truthful answers to sensitive questions. The exercise in
section 3.9.2 introduced a survey methodology that reduces measurement error due
to the possibility that respondents may interpret the same questions differently. These
examples suggest that studying a variety of data collection strategies is as important for
quantitative social scientists as learning about data analysis.

While different interests may take people in various directions after completing this
book, everyone should continue to practice data analysis. In the words of John W.
Tukey,2 “If data analysis is to be helpful and useful, it must be practiced.” Now that
users of this book have learned the basic methodology and programming necessary
for data analysis, they should begin to conduct quantitative social science research by
analyzing data sets of their choice. Just as with data analysis, one learns how to conduct
research only by doing, not by reading the research of other people. With the massive
amount of data available online, anyone from undergraduate to graduate students and
from practitioners to academic researchers should be able to start making their own
data-driven discoveries.

This book highlights the power of data analysis. However, it is also important to be
aware of its fundamental limitations when analyzing data. In particular, data analysis
is far from objective. Good data analysis must be accompanied by sound judgment,
which is in turn built upon one’s knowledge and experience. Without substantive
theories, data analysis can easily be misguided. In quantitative social science research,
we analyze data for the purpose of better understanding society and human behavior.
This goal is unattainable unless we use social science theories to determine how data
should be analyzed. Stronger theoretical guidance is required for the analysis of “big
data” because without it we will not know where to look for interesting patterns.

1 Ronald A. Fisher (1938) “Presidential address: The first session of the Indian Statistical Conference, Calcutta,
1938.” Sankhyā, vol. 4, pp. 14–17.

2 John W. Tukey (1962) “The future of data analysis.” Annals of Mathematical Statistics, vol. 33, no. 1,
pp. 1–67.
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Although a solid grasp of the mathematics that underlie statistical theories and
methods is important, we should not underestimate the value of contextual knowledge
about the data sets to be analyzed. For example, to competently design and analyze
the survey of Afghan civilians introduced in chapter 3, researchers had to understand
the cultural, political, and economic environment of local communities in Afghanistan
where the respondents live. Interviewing individuals who have little education, during a
civil war, is a challenging task. The researchers worked with a local survey firm in order
to gain access to rural villages through negotiation with local leaders and militants.
For cultural reasons, they were unable to interview female respondents, and interviews
had to take place in a public sphere where village elders were able to listen to survey
questions and answers. Randomized response methodology is a classic survey method
for asking sensitive questions while protecting the secrecy of individual responses.
However, this method was seen as inappropriate in the study because the required
randomization using coins or dice was considered to be against Islamic law. Other
challenges in this study included how to ask respondents’ tribal affiliation, how to
measure the level of wealth when the economy is largely informal, and what policy
questions to ask when measuring respondents’ political ideology.

These examples illustrate the importance of contextual knowledge in designing
and implementing quantitative social science research. Therefore, data analysts should
learn about the relevant substance and background of their study, either on their own
or by partnering with experts, well before starting to analyze data. They should also
be aware of the danger that mechanical applications of statistical methods to data may
lead to unreliable empirical findings. Indeed, this is the reason why applied statistics
has developed separately in a variety of fields of the natural and social sciences. While
statistical methods rest on universal mathematical theory and are widely applicable,
their application requires specific substantive knowledge. The goal of this book has
been to illustrate this unique feature of data analysis and statistics by showing how
general methods can be used to answer interesting social science questions.

With rapid advancements in technology and data availability, the world needs those
who can creatively combine substantive knowledge with data analysis skills in all fields,
from academia to journalism. This book opens the door to this exciting world of data
analysis.
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