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t.ci <- t.test(STAR$g4reading[STAR$classtype == 1],

STAR$g4reading[STAR$classtype == 2])

t.ci

##

## Welch Two Sample t-test

##

## data:STAR$g4reading[STAR$classtype==1] and STAR$g4reading[STAR$classtype == 2]

## t = 1.3195, df = 1541.2, p-value = 0.1872

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.703591 8.706055

## sample estimates:

## mean of x mean of y

## 723.3912 719.8900

The degrees of freedom are calculated as 1541.2. Because the size of our sample is
not too small, the resulting confidence interval is only slightly wider than the one based
on the normal approximation reported above.

7.2 Hypothesis Testing

In section 6.1.5, we presented an analysis of Arnold Schwarzenegger’s 2009 veto
message to the California legislature, and showed that the particular order of words
in his message was highly unlikely to be a consequence of coincidence alone. This
was done by examining the likelihood of observing the event that actually happened
under a particular probability model. In section 6.6.3, a similar method was used to
detect election fraud in Russia, where we generated hypothetical election results and
compared them with the actual election outcome to investigate whether the latter was
anomalous. In this section, we formalize this logic and introduce a general principle
of statistical hypothesis testing that underlies such analysis. This principle enables us
to determine whether or not the occurrence of an observed event is likely to be due to
chance alone.

7.2.1 TEA-TASTING EXPERIMENT
In his classic book The Design of Experiments, Ronald Fisher introduced the idea

of a statistical hypothesis test. During an afternoon tea party at the University of
Cambridge, a lady declared that tea tastes different depending on whether the tea is
poured into the milk or the milk is poured into the tea. Fisher examined this claim
by using a randomized experiment in which 8 identical cups were prepared and 4 were
randomly selected for milk to be poured into the tea. For the remaining 4 cups, themilk
was poured first. The lady was then asked to identify, for each cup, whether the tea or
the milk had been poured first. To everyone’s surprise, the lady correctly classified all
the cups. Did this happen by luck or did the lady actually possess the ability to detect
the order, as she claimed?
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Table 7.2. Tea-Tasting Experiment.

Cups Lady’s guess Actual order Scenarios · · ·

1 M M T T T
2 T T T T M
3 T T T T M
4 M M T M M
5 M M M M T
6 T T M M T
7 T T M T M
8 M M M M T

Number of correct guesses 8 4 6 2 · · ·

Note: “M” and “T” represent two scenarios, “milk is poured first” and “tea is poured first,” respectively.
Under the hypothesis that the lady has no ability to distinguish the order in which milk and tea were
poured into each cup, her guess will be identical regardless of which cups had milk/tea poured first.

To analyze this randomized experiment, we draw on potential outcomes as ex-
plained in chapter 2. For each of the 8 cups, we consider two potential guesses
given by the lady, which may or may not depend on whether milk or tea was
actually poured into the cup first. If we hypothesize that the lady had no ability to
distinguish whether milk or tea was poured into the cup first, then her guess should
not depend on the actual order in which milk and tea were poured. In other words,
under this hypothesis, the two potential outcomes should be identical. Recall the
fundamental problem of causal inference, which states that only one of the two potential
outcomes can be observed. Here, the hypothesis that the lady possesses no ability to
distinguish the two types of tea with milk reveals her responses under counterfactual
scenarios.

Fisher’s analysis proceeds under this hypothesis and involves computing the
number of correctly guessed cups under every possible assignment combination. As
discussed in section 7.1.1, this experiment is an example of complete randomization,
where the number of observations assigned to each condition is fixed a priori. In
contrast, simple randomizationwould randomize each cup independently without such
a constraint. Table 7.2 illustrates Fisher’s method. The second column of the table
shows the lady’s actual guess for each cup, which is identical to the true order (third
column) in whichmilk and tea were poured into the cup. In the remaining columns, we
show three arbitrarily selected combinations of assigning 4 cups to “milk first” and the
other 4 to “tea first.” Although these counterfactual assignment combinations did not
occur in the actual experiment, we can compute the number of correctly guessed cups
under each scenario with the aforementioned hypothesis that the lady lacks the ability
to distinguish between the two types of tea with milk and thus different assignments do
not affect the lady’s guess. This is done by simply comparing the lady’s guess (second
column), which is assumed to remain unchanged, with each counterfactual assignment.
For example, if the cups had received the assignments in the fifth column of the table,
then the number of correctly classified cups would have been 6.
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Figure 7.2. Sampling Distribution for the Tea-Tasting Experiment. The bar plot shows the
distribution of the number of correctly classified cups.

Under this setup, the key question concerns the likelihood that the lady would have
classified all 8 cups correctly if she had not had the ability to distinguish the taste
difference. Since each assignment combination is equally likely in this randomized
experiment, we can compute the probability of perfect classification by counting the
number of ways in which we assign 4 cups to the “milk first” condition and the
remaining 4 cups to the “tea first” condition (see equation (6.1)). The number of
combinations is given by 8C4 = 8!/(4! × (8 − 4)!) = 70 because 4 cups out of 8
were selected to have tea poured in first. Thus, under the assumption that the lady has
no ability to distinguish the taste difference, the probability that she guesses all cups
correctly is 1/70, or approximately 0.01, which is quite small. We conclude from this
analysis that the lady’s perfect classification is unlikely to have occurred due to chance
alone.

Moreover, as shown in figure 7.2, we can characterize the exact distribution of the
number of correctly specified cups over all possible assignment combinations. How is
this distribution derived? First, there is only one assignment combination, presented
as the actual order in the third column of the table, that makes the lady’s guesses a set
of perfect classifications. Similarly, there is one assignment combination that makes all
of her guesses incorrect. In this experiment, the number of ways in which the lady
guesses 2 cups correctly is equivalent to the product of two things: the number of
ways in which the lady correctly classifies one of the 4 “milk first” conditions and the
number of ways in which the lady incorrectly classifies 3 of them. We can compute
this as 4C1 × 4C3 = 16. The same calculation applies to the number of assignment
combinations that leads to 6 correctly classified cups. Similarly, we can compute the
number of combinations that lead to 4 correctly classified cups, which is given by
4C2 × 4C2 = 36. Finally, because by design the number of cups assigned to each
condition is equal, there is no instance where the number of correctly classified cups
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is odd. Below, we compute the probability of each event by using the choose()
function, which enables us to compute combinations.

## truth: enumerate the number of assignment combinations

true <- c(choose(4, 0) * choose(4, 4),

choose(4, 1) * choose(4, 3),

choose(4, 2) * choose(4, 2),

choose(4, 3) * choose(4, 1),

choose(4, 4) * choose(4, 0))

true

## [1] 1 16 36 16 1

## compute probability: divide it by the total number of events

true <- true / sum(true)

## number of correctly classified cups as labels

names(true) <- c(0, 2, 4, 6, 8)

true

## 0 2 4 6 8

## 0.01428571 0.22857143 0.51428571 0.22857143 0.01428571

As done in chapter 6, we can also approximate this distribution using Monte
Carlo simulations. We generate 1000 hypothetical experiments to approximate the
sampling distribution of the number of correctly classified cups. To do this, we use the
sample() function and sample without replacement 8 elements from a vector of 4 M’s
and 4 T’s. This is equivalent to randomly assigning 4 cups to the “milk first” condition
and the remaining 4 to the “tea first” condition. We then compute the fraction of trials
that yield a certain number of correctly specified cups. The following code chunk shows
this simulation approach. We find that the differences between the simulation results
and the analytical answers are quite small.

## simulations

sims <- 1000

## lady’s guess: M stands for “milk first,” T stands for “tea first”

guess <- c("M", "T", "T", "M", "M", "T", "T", "M")

correct <- rep(NA, sims) # place holder for number of correct guesses

for (i in 1:sims) {

## randomize which cups get milk/tea first

cups <- sample(c(rep("T", 4), rep("M", 4)), replace = FALSE)

correct[i] <- sum(guess == cups) # number of correct guesses

}

## estimated probability for each number of correct guesses

prop.table(table(correct))

## correct

## 0 2 4 6 8

## 0.015 0.227 0.500 0.248 0.010
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## comparison with analytical answers; the differences are small

prop.table(table(correct)) - true

## correct

## 0 2 4 6

## 0.0007142857 -0.0015714286 -0.0142857143 0.0194285714

## 8

## -0.0042857143

The major advantage of Fisher’s analysis is that the inference is solely based on
the randomization of treatment assignment. Such inference is called randomization
inference. Methods based on randomization inference typically do not require a
strong assumption about the data-generating process because researchers control
the randomization of treatment assignment, which alone serves as the basis of
inference.

7.2.2 THE GENERAL FRAMEWORK
The tea-tasting experiment described above illustrates a general framework called

statistical hypothesis testing. Statistical hypothesis testing is based on probabilistic
proof by contradiction. Proof by contradiction is a general strategy of mathematical
proof in which one demonstrates that assuming the contrary of what we would like
to prove leads to a logical contradiction. For example, consider the proposition that
there is no smallest positive rational number. To prove this proposition, we assume
that the conclusion is false. That is, suppose that there exists a smallest positive rational
number a. Recall that any rational number can be expressed as the fraction of two
integers: a = p/q > 0 where both the numerator p and the nonzero denominator q
are positive integers. But, for example, b = a/2 is smaller than a, and yet b is also a
rational number. This contradicts the hypothesis that a is the smallest positive rational
number.

In the case of statistical hypothesis testing, we can never reject a hypothesis with
100% certainty. Consequently, we use a probabilistic version of proof by contradiction.
We begin by assuming a hypothesis we would like to eventually refute. This hypothesis
is called a null hypothesis, often denoted by H0. In the current application, the null
hypothesis is that the lady has no ability to tell whether milk or tea is poured first into a
cup. This is an example of sharp null hypothesis because all potential outcomes for each
observation are determined, and therefore known, under this hypothesis. In contrast,
we will later consider a nonsharp null hypothesis, which fixes the average potential
outcome rather than every potential outcome.

Second, we choose a test statistic, which is some function of observed data. For
the tea-tasting experiment, the test statistic is the number of correctly specified cups.
Next, under the null hypothesis, we derive the sampling distribution of the test statistic,
which is given in figure 7.2 for our application. This distribution is also called the
reference distribution. Finally, we ask whether the observed value of the test statistic
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Table 7.3. Type I and Type II Errors in Hypothesis Testing.

Reject H0 Retain H0

H0 is true type I error correct
H0 is false correct type II error

Note: H0 represents the null hypothesis.

is likely to occur under the reference distribution. In the current experiment, the
number of correctly classified cups is observed to be 8. If 8 is likely under the reference
distribution, we retain the null hypothesis. If it is unlikely, then we reject the null
hypothesis.

In this textbook, we prefer to use phrases such as “fail to reject the null hypothesis”
and “retain the null hypothesis” instead of “accept the null hypothesis.” Philosophical
views on this issue differ, but we adopt a perspective that failure to reject the null
hypothesis is evidence for some degree of consistency between the data and the
hypothesis, but does not necessarily indicate the correctness of the null hypothesis.
Others, however, argue that the failure to reject the null hypothesis implies acceptance
of the hypothesis. Regardless of one’s stance on this issue, statistical hypothesis testing
provides empirical support for scientific theories.

How should we quantify the degree to which the observed value of the test statistic
is unlikely to occur under the null hypothesis? We use the p-value for this purpose.
The p-value can be understood as the probability that under the null hypothesis, we
observe a value of the test statistic at least as extreme as the one we actually observed.
A smaller p-value provides stronger evidence against the null hypothesis. Importantly,
the p-value does not represent the probability that the null hypothesis is true. This
probability is actually either 1 or 0 because the null hypothesis is either true or false,
though researchers do not know which.

In order to decide whether or not to reject the null hypothesis, we must specify
the level of test α (as explained later, this α is the same as the confidence level α for
confidence intervals discussed earlier). If the p-value is less than or equal to α, then we
reject the null hypothesis. The level of test represents the probability of false rejection
if the null hypothesis is true. This error is called type I error. Typically, we would like
the level of test to be low. Commonly used values of α are 0.05 and 0.01.

Table 7.3 shows two types of errors in hypothesis testing. While researchers can
specify the degree of type I error by choosing the level of test α, it is not possible
to directly control type II error, which results when researchers retain a false null
hypothesis. Notably, there is a clear trade-off between type I and type II errors in
that minimizing type I error usually increases the risk of type II error. As an extreme
example, suppose that we never reject the null hypothesis. Under this scenario, the
probability of type I error is 0 if the null hypothesis is true, but the probability of type II
error is 1 if the null hypothesis is false.

In the case of the tea-tasting experiment, the test statistic is the number of correctly
classified cups. Since the observed value of this test statistic was 8, which is the most
extreme value, the p-value equals the probability that the number of correct guesses is
8 or 1/70 ≈ 0.014. If the lady correctly classified 6 cups instead of 8, two values are at
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least as extreme as the observed value: 6 and 8. Therefore, in this case, the p-value is
(4C0 × 4C4 + 4C1 × 4C3)/70 = (1 + 16)/70 ≈ 0.243.

These p-values are one-sided p-values (or one-tailed p-values) because they consider
only the values of the test statistic that are greater than or equal to the observed
value. Under this one-sided alternative hypothesis, which is the complement of the
null hypothesis, we ignore an extreme response on the other side, such as classifying
all 8 cups incorrectly. In contrast, if we specify a two-sided alternative hypothesis,
then computing the two-sided p-value (or two-tailed p-value) requires consideration of
extreme values on both sides. If the reference distribution is symmetric, then the two-
sided p-value is twice as great as the one-sided value. In the tea-tasting experiment, the
two-sided p-value is 2/70 ≈ 0.029. If the lady had correctly guessed 6 cups, then the
two-sided p-value is 2 × (1 + 16)/70 ≈ 0.486.

While the framework described here is applicable to any statistical hypothesis
testing, the particular hypothesis testing procedure used for the tea-tasting experiment
is called Fisher’s exact test. As explained earlier, this test is an example of randomization
inference, where the validity of the test can be justified based on the randomization of
treatment assignment.

Fisher’s exact test can be implemented in R using the fisher.test() function.
The main input of this function is a 2 × 2 contingency table in matrix form, where
the rows and columns represent a binary treatment assignment variable and a binary
outcome variable, respectively. Here, as examples, we create tables for the tea-tasting
experiment: one case with all 8 cups correctly classified and the other case with 6 out
of 8 cups correctly classified. In each table, rows represent actual assignments and
columns provide reported guesses with the diagonal elements corresponding to the
correct guesses.

## all correct

x <- matrix(c(4, 0, 0, 4), byrow = TRUE, ncol = 2, nrow = 2)

## 6 correct

y <- matrix(c(3, 1, 1, 3), byrow = TRUE, ncol = 2, nrow = 2)

## “M” milk first, “T” tea first

rownames(x) <- colnames(x) <- rownames(y)<- colnames(y) <- c("M", "T")

x

## M T

## M 4 0

## T 0 4

y

## M T

## M 3 1

## T 1 3

We can specify an alternative hypothesis by setting the alternative argument to
"two.sided" (default), "greater", or "less". In the following code chunk, we
conduct Fisher’s exact test with one-sided and two-sided alternatives. We confirm that
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the p-values obtained from the fisher.test() function are identical to those we
calculated on our own.

## one-sided test for 8 correct guesses

fisher.test(x, alternative = "greater")

##

## Fisher’s Exact Test for Count Data

##

## data: x

## p-value = 0.01429

## alternative hypothesis: true odds ratio is greater than 1

## 95 percent confidence interval:

## 2.003768 Inf

## sample estimates:

## odds ratio

## Inf

## two-sided test for 6 correct guesses

fisher.test(y)

##

## Fisher’s Exact Test for Count Data

##

## data: y

## p-value = 0.4857

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.2117329 621.9337505

## sample estimates:

## odds ratio

## 6.408309

We now summarize the general procedure of statistical hypothesis testing.

In general, statistical hypothesis testing consists of the following five steps:
1. Specify a null hypothesis and an alternative hypothesis.
2. Choose a test statistic and the level of test α.
3. Derive the reference distribution, which refers to the sampling

distribution of the test statistic under the null hypothesis.
4. Compute the p-value, either one-sided or two-sided depending on the

alternative hypothesis.
5. Reject the null hypothesis if the p-value is less than or equal to α.

Otherwise, retain the null hypothesis (i.e., fail to reject the null
hypothesis).
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While statistical hypothesis testing is a principled way to quantify uncertainty, the
methodology has an important disadvantage. In particular, it forces researchers to
make a binary decision about whether to reject the null hypothesis. In many situations,
however, we are not interested in the null hypothesis itself. In fact, we may believe
that the null hypothesis never strictly holds true. Instead, it could be more fruitful to
quantify the degree to which the observed data deviate from the null hypothesis. In
the tea-tasting experiment, we may wish to measure the extent to which the lady can
taste the difference rather than simply whether or not she possesses any ability in this
regard.While the p-value represents the degree to which empirical evidence refutes the
null hypothesis, it does not directly correspond to the substantive quantity of interest.
In other words, while hypothesis testing can determine statistical significance, it often
fails to provide a direct measure of scientific significance.

7.2.3 ONE-SAMPLE TESTS
Using the general principle of statistical hypothesis testing we have introduced, a

variety of hypothesis tests can be developed. We consider one-sample and two-sample
tests, which are among the most commonly used tests. One-sample tests of means are
used to examine the null hypothesis that the population mean equals a specific value.
Two-sample tests, on the other hand, are based on the null hypothesis that the means
of two populations equal each other. Two-sample tests are particularly useful when
analyzing randomized controlled trials, enabling researchers to investigate whether or
not the observed difference in average outcomes between the treatment and control
groups is likely to arise by random chance alone. These tests are used more frequently
than Fisher’s exact test, described earlier, because they do not rely on the sharp null
hypothesis that no unit is affected by the treatment. Instead, two-sample tests concern
whether treatment influences an outcome on average.

We start, as an example of one-sample tests, with a reanalysis of the sample surveys
given in section 7.1.4. Suppose that our null hypothesis is that in the population exactly
half of voters support Obama and the other half do not, i.e., H0 : p = 0.5. Let an
alternative hypothesis be that Obama’s support rate is not 0.5, i.e., H1 : p �= 0.5.
Now, suppose that we conduct a simple random sample and interview 1018 selected
individuals, n = 1018. In this sample, 550 of them express support for Obama whereas
the other individuals do not. This implies that the sample proportion of Obama’s
supporters is 54%, i.e., Xn = 550/1018. Clearly, the sample proportion differs from
the hypothesized proportion, 0.5, but is this difference statistically significant? Is the
difference within the sampling error? Statistical hypothesis testing can answer this
question.

We follow the general procedure of hypothesis testing laid out in section 7.2.2. Since
the null and alternative hypotheses are defined above, we next choose a test statistic
and the level of the test. We use the sample proportion Xn as our test statistic and
set α = 0.05. We then derive the sampling distribution of this test statistic under the
null hypothesis. Following the discussion in section 7.1.3 and utilizing equation (7.12),
we use the central limit theorem to approximate the reference distribution of Xn
as N (0.5, 0.5(1 − 0.5)/1018), where the variance is computed using the formula
V(X)/n = p(1 − p)/n. Note that this variance of the reference distribution is
constructed using Obama’s support rate under the null hypothesis, i.e., p = 0.5.
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Figure 7.3. One-Sided and Two-Sided p-Values. The density curve represents the refer-
ence distribution under the null hypothesis that the population proportion is 0.5. The
observed value is indicated by the solid vertical line. The two-sided p-value equals the
sum of the two blue shaded areas under the curve, whereas the one-sided p-value is
equal to the one of the two blue areas under the curve (depending on the alternative
hypothesis).

Under this setup, the two-sided p-value, corresponding to our null and alternative
hypotheses, can be computed as the probability that under the null hypothesis we
observe a value more extreme than the observed value, i.e., Xn = 550/1018. Figure 7.3
shows this graphically where a more extreme value is indicated by any value either
above the observed value (solid line approximately at 0.54) or below its symmetric
value (dotted line approximately at 0.46). Thus, the two-sided p-value equals the sum
of the two blue shaded areas under the density curve. We use the pnorm() function
to calculate each area where the argument lower.tail needs to be set to FALSE in
order to compute the upper blue area in the figure.

n <- 1018

x.bar <- 550 / n

se <- sqrt(0.5 * 0.5 / n) # standard deviation of sampling distribution

## upper blue area in the figure

upper <- pnorm(x.bar, mean = 0.5, sd = se, lower.tail = FALSE)

## lower blue area in the figure; identical to the upper area

lower <- pnorm(0.5 - (x.bar - 0.5), mean = 0.5, sd = se)

## two-sided p-value

upper + lower

## [1] 0.01016866

In this particular case, since both the upper and lower shaded areas have the same
area (because the normal distribution is symmetric around its mean), we can simply
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double one of the areas to obtain the two-sided p-value. Note that this may not work
in other cases where the reference distribution is not symmetric.

2 * upper

## [1] 0.01016866

If, on the other hand, our alternative hypothesis is p > 0.5 rather than p �= 0.5,
then we must compute the one-sided p-value. In this case, there is no need to consider
the possibility of an extremely small value because the alternative hypothesis specifies
p to be greater than the null value. Hence, the one-sided p-value is given by the blue
area under the curve above the observed value in the figure.

## one-sided p-value

upper

## [1] 0.005084332

Regardless of whether we use the one-sided or two-sided p-value, we reject the null
hypothesis that Obama’s support in the population is exactly 50%. We conclude that
the 4 percentage point difference we observe is unlikely to arise due to chance alone.

When using the normal distribution as the reference distribution, researchers
often use the z-score to standardize the test statistic by subtracting its mean and
dividing it by its standard deviation. Once this transformation is made, the reference
distribution becomes the standard normal distribution. That is, if we use μ0 to denote
the hypothesized mean under the null hypothesis, we have the following result so long
as the sample size is sufficiently large (due to the central limit theorem):

Xn − μ0

standard error of Xn
∼ N (0, 1). (7.19)

Note that this transformation does not change the outcome of the hypothesis testing
conducted above. In fact, the p-value will be identical with or without this transfor-
mation. However, one can easily compare the z-score with the critical values shown in
table 7.1 in order to determine whether to reject the null hypothesis without computing
the p-value. For example, under the two-sided alternative hypothesis, if the z-score is
greater than 1.96, then we reject the null hypothesis. We now show, using the current
example, that we obtain the same p-value as above.

z.score <- (x.bar - 0.5) / se

z.score

## [1] 2.57004

pnorm(z.score, lower.tail = FALSE) # one-sided p-value

## [1] 0.005084332
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2 * pnorm(z.score, lower.tail = FALSE) # two-sided p-value

## [1] 0.01016866

This test, which is based on the z-score of the sample mean, is called the one-sample
z-test. Although we used this test for a Bernoulli random variable in this example, the
test can be applied to a wide range of nonbinary random variables so long as the sample
size is sufficiently large and the central limit theorem is applicable. For nonbinary
random variables, we will use the sample variance to estimate the standard error. If
the random variable X is distributed according to the normal distribution, then the
same test statistic, i.e., the z-score of the sample mean, follows the t-distribution with
n− 1 degrees of freedom instead of the standard normal distribution. This one-sample
t-test is more conservative than the one-sample z-test, meaning that the former gives
a greater p-value than the latter. Some researchers prefer conservative inference and
hence use the one-sample t-test rather than the one-sample z-test.

Suppose that {X1, X2, . . . , Xn} are n independently and identically distributed
random variables with mean μ and variance σ 2. The one-sample z-test consists
of the following components:

1. Null hypothesis that the population mean μ is equal to a prespecified
value μ0: H0 : μ = μ0

2. Alternative hypothesis: H1 : μ �= μ0 (two-sided), H1 : μ > μ0
(one-sided), or H1 : μ < μ0 (one-sided)

3. Test statistic (z-statistic): Zn = (Xn − μ0)/
√

σ̂ 2/n, where
Xn = 1

n
∑n

i=1 Xi (sample mean)
4. Reference distribution: Zn ∼ N (0, 1) when n is large
5. Variance: σ̂ 2 = 1

n−1
∑n

i=1(Xi − Xn)2 (sample variance) or
σ̂ 2 = μ0(1 − μ0) if X is a Bernoulli random variable

6. p-value: �(−|Zn|) (one-sided) and 2�(−|Zn|) (two-sided), where �(·)
is the cumulative distribution function (CDF) of the standard
normal distribution

If X is normally distributed, the same test statistic Zn is called the t-statistic and
follows the t-distribution with n−1 degrees of freedom. The p-value will be based
on the cumulative distribution of this t-distribution. This is called the one-sample
t-test, which is more conservative than the one-sample z-test.

There exists a general one-to-one relationship between confidence intervals and
hypothesis tests. Compare equation (7.19) with equation (7.15). The difference is that
the unknown population mean E(X) in the former is replaced with the hypothesized
population mean μ0 in the latter. Note that under a null hypothesis the hypothesized
mean μ0 represents the actual population mean. This suggests that we reject a null
hypothesis H0 : μ = μ0 using the α-level two-sided test if and only if the (1−α)×100%
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confidence interval does not contain μ0. We can confirm this result using the current
example by checking that 0.5 is contained in the 99% confidence interval (since we
reject the null hypothesis when α = 0.1) but not in the 95% confidence interval (we
fail to reject the null when α = 0.05).

## 99% confidence interval contains 0.5

c(x.bar - qnorm(0.995) * se, x.bar + qnorm(0.995) * se)

## [1] 0.4999093 0.5806408

## 95% confidence interval does not contain 0.5

c(x.bar - qnorm(0.975) * se, x.bar + qnorm(0.975) * se)

## [1] 0.5095605 0.5709896

It turns out that this one-to-one relationship between confidence intervals and
hypothesis testing holds in general. Many researchers, however, prefer to report
confidence intervals rather than p-values because the former also contain information
about the magnitude of effects, quantifying scientific significance as well as statistical
significance.

We conducted the one-sample z-test for sample proportion “by hand” above in
order to illustrate the underlying idea. However, R has the prop.test() function,
which enables us to conduct this test in a single line of R code. For the one-sample test
of sample proportion like the one above, the function takes the number of successes
as the main argument x and the number of trials as the argument n. In addition,
one can specify the success probability under the null hypothesis as p, as well as the
alternative hypothesis ("two.sided" for the two-sided alternative hypothesis, and
either "less" or "greater" for the one-sided alternative hypothesis). The default
confidence level is 95%, which we can change with the conf.level argument.

Finally, the correct argument determines whether a continuity correction should
be applied in order to improve the approximation (the default is TRUE). This correction
is generally recommended, especially when the sample size is small because the
binomial distribution, which is a discrete distribution, is approximated by a continuous
distribution, i.e., the normal distribution. We first show that prop.test() without a
continuity correction gives a result identical to the one obtained earlier. We then show
the result based on the continuity correction.

## no continuity correction to get the same p-value as above

prop.test(550, n = n, p = 0.5, correct = FALSE)

##

## 1-sample proportions test without continuity

## correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.6051, df = 1, p-value = 0.01017

## alternative hypothesis: true p is not equal to 0.5
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## 95 percent confidence interval:

## 0.5095661 0.5706812

## sample estimates:

## p

## 0.540275

## with continuity correction

prop.test(550, n = n, p = 0.5)

##

## 1-sample proportions test with continuity correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.445, df = 1, p-value = 0.01113

## alternative hypothesis: true p is not equal to 0.5

## 95 percent confidence interval:

## 0.5090744 0.5711680

## sample estimates:

## p

## 0.540275

The prop.test() function also conveniently yields confidence intervals. Note
that the standard error used for confidence intervals is different from the standard
error used for hypothesis testing. This is because the latter standard error is derived
under the null hypothesis

√
p(1 − p)/n, whereas the standard error for confidence

intervals is computed using the estimated proportion,
√

Xn(1 − Xn)/n. To illustrate a
different level of confidence intervals, we can compute 99% confidence intervals using
the conf.level argument.

prop.test(550, n = n, p = 0.5, conf.level = 0.99)

##

## 1-sample proportions test with continuity correction

##

## data: 550 out of n, null probability 0.5

## X-squared = 6.445, df = 1, p-value = 0.01113

## alternative hypothesis: true p is not equal to 0.5

## 99 percent confidence interval:

## 0.4994182 0.5806040

## sample estimates:

## p

## 0.540275

As another example, we revisit the analysis of the STAR project given in
section 7.1.5. We first conduct a one-sample t-test just for illustration. Suppose that we
test the null hypothesis that the population mean test score is 710, i.e., H0 : μ = 710.
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We use the t.test() function where we specify the null value μ0 using the mu
argument. The other arguments such as alternative and conf.level work in
the exact same way as for the prop.test() function. We use the reading test
score for our analysis and conduct a two-sided one-sample t-test. As the result below
shows, we retain, at the 0.05 level, the null hypothesis that the population mean of
test score is 710. The resulting p-value is small, leading to the rejection of the null
hypothesis.

## two-sided one-sample t-test

t.test(STAR$g4reading, mu = 710)

##

## One Sample t-test

##

## data: STAR$g4reading

## t = 10.407, df = 2352, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 710

## 95 percent confidence interval:

## 719.1284 723.3671

## sample estimates:

## mean of x

## 721.2478

7.2.4 TWO-SAMPLE TESTS
We now move to a more realistic analysis of the STAR project. When analyzing

randomized controlled trials like this, researchers often conduct a statistical hypothesis
test with the null hypothesis that the population average treatment effect (PATE) is
zero, i.e., H0 : E(Yi (1) − Yi (0)) = 0 with a two-sided alternative hypothesis given by
H1 : E(Yi (1) − Yi (0)) �= 0. If we assume that the PATE cannot be negative, then we
employ a one-sided alternative hypothesis, H1 : E(Yi (1) − Yi (0)) > 0. In contrast, if
we assume that the PATE cannot be positive, we set H1 : E(Yi (1) − Yi (0)) < 0. In this
application, we would like to test whether or not the PATE of small class size on the
grade-four reading score (relative to regular class size) is zero.

To test this null hypothesis, we use the difference-in-means estimator as a test sta-
tistic. More generally, beyond randomized controlled trials, we can use the two-sample
tests based on the difference-in-means estimator to investigate the null hypothesis that
the means are equal between these two populations. What is the reference distribution
of this test statistic? We can approximate it by appealing to the central limit theorem
as in section 7.1.5. The theorem implies that the sample means of the treatment and
control groups have a normal distribution. Therefore, under the null hypothesis of
equal means between the two populations, the difference between these two sample
means is also normally distributed with mean zero. Furthermore, the z-score of the
difference in sample means follows the standard normal distribution. We can use this
fact to conduct the two-sample z-test (see equation (7.18) for the expression of standard
error, which serves as the denominator of the test statistic). As in the one-sample tests,
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if the outcomes are assumed to be normally distributed, the two-sample t-test can be
used, which yields a more conservative inference.

Suppose that {X1, X2, . . . , Xn0} represent n0 independently and identically
distributed random variables with mean μ0 and variance σ 2

0 . Similarly,
{Y1,Y2, . . . ,Yn1} represent n1 independently and identically distributed random
variables with mean μ1 and variance σ 2

1 . The two-sample z-test of sample means
consists of the following components:

1. Null hypothesis that two populations have the samemean: H0 : μ0 = μ1
2. Alternative hypothesis: H1 : μ0 �= μ1 (two-sided), H1 : μ0 > μ1

(one-sided), or H1 : μ0 < μ1 (one-sided)
3. Test statistic (z-statistic): Zn = (Yn1 − Xn0 )/

√
1
n1 σ̂

2
1 + 1

n0 σ̂
2
0

4. Reference distribution: Zn ∼ N (0, 1) when n0 and n1 are large
5. Variance: σ̂ 2

0 = 1
n0−1
∑n0

i=1(Xi − Xn0 )2 and σ̂ 2
1 = 1

n1−1
∑n1

i=1(Yi − Yn1 )2

(sample variances) or σ̂ 2
0 = σ̂ 2

1 = p̂(1 − p̂) with
p̂ = n0

n0+n1 Xn0 + n1
n0+n1Yn1 if X and Y are Bernoulli random variables

6. p-value: �(−|Zn|) (one-sided) and 2�(−|Zn|) (two-sided), where �(·)
is the cumulative distribution function (CDF) of the standard normal
distribution

If X and Y are normally distributed, the same test statistic Zn is called the
t-statistic and follows the t-distribution. The p-value will be based on the cumu-
lative distribution of this t-distribution. This is called the two-sample t-test,
which is more conservative than the one-sample z-test.

Recall from section 7.1.5 that the estimated PATE is stored as an R object ate.est
whereas its standard error is given by the R object ate.se. Using these objects, we
compute the one-sided and two-sided p-values as follows.

## one-sided p-value

pnorm(-abs(ate.est), mean = 0, sd = ate.se)

## [1] 0.09350361

## two-sided p-value

2 * pnorm(-abs(ate.est), mean = 0, sd = ate.se)

## [1] 0.1870072

Since this p-value is much greater than the typical threshold of 5%, we cannot reject
the hypothesis that the average treatment effect of small class size on the fourth-grade
reading test score is zero.

The hypothesis test conducted above is based on the large sample approximation
because we relied upon the central limit theorem to derive the reference distribution.
Similar to the discussion in section 7.1.5, if we assume that the outcome variable
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is normally distributed, then we could use the t-distribution instead of the normal
distribution to conduct a hypothesis test. As a test statistic, we use the z-score for the
difference-in-means estimator, which is called the t-statistic in the case of this two-
sample t-test. Unlike the one-sample example discussed in section 7.1.5, however, the
degrees of freedom must be approximated for the two-sample t-test. Because the
t-distribution generally has heavier tails than the normal distribution, the t-test is more
conservative and hence is often preferred even when the outcome variable may not be
normally distributed.

In R, we can conduct a two-sample t-test using the t.test() function as we did for
a one-sample t-test. For the two-sample t-test, the function takes two vectors, each of
which contains data for one of the two groups. We can specify the difference between
the means of the two groups, or the PATE in this application, under the null hypothesis
via the mu argument. The default value for this argument is zero, which is what we
would like to use in the current example.

## testing the null of zero average treatment effect

t.test(STAR$g4reading[STAR$classtype == 1],

STAR$g4reading[STAR$classtype == 2])

##

## Welch Two Sample t-test

##

## data:STAR$g4reading[STAR$classtype==1] and STAR$g4reading[STAR$classtype == 2]

## t = 1.3195, df = 1541.2, p-value = 0.1872

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.703591 8.706055

## sample estimates:

## mean of x mean of y

## 723.3912 719.8900

The output displays the value of the t-statistic as well as the p-value and the degrees
of freedom for Student’s t-distribution used for the test. Since the p-value is greater
than the standard threshold of α = 0.05, we fail to reject the null hypothesis that
the average treatment effect of small class size on the fourth-grade reading score is
zero. As in the case of prop.test(), the output of the t.test() function contains
the confidence interval for the corresponding level. As expected from the use of the
t-distribution, this confidence interval is slightly wider than the confidence interval
based on the normal approximation we obtained in section 7.1.5. The confidence
interval also contains zero, which is consistent with the fact that we fail to reject the
null hypothesis of zero average treatment effect.

As another application of hypothesis tests, we reanalyze the labor market discrim-
ination experiment described in section 2.1. In this experiment, fictitious résumés
of job applicants were sent to potential employers. Researchers randomly assigned
stereotypically African-American or Caucasian names to each résumé and examined
whether or not the callback rate depended on the race of the applicant. The data set
we analyze is contained in the CSV file resume.csv. The names and descriptions
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of variables in this data set are given in table 2.1. The outcome variable of interest is
call, which indicates whether or not each résumé received a callback. The treatment
variable is the race of the applicant, race, and we focus on the comparison between
black-sounding and white-sounding names.

We test the null hypothesis that the probability of receiving a callback is the same
between résumés with black-sounding names and those with white-sounding names.
We use the prop.test() function to implement the two-sample z-test. The input is a
table whose columns represent the counts of successes and failures and rows represent
the two groups to be compared. We will use a one-sided test because résumés with
black-sounding names are hypothesized to receive fewer callbacks.

resume <- read.csv("resume.csv")

## organize the data in tables

x <- table(resume$race, resume$call)

x

##

## 0 1

## black 2278 157

## white 2200 235

## one-sided test

prop.test(x, alternative = "greater")

##

## 2-sample test for equality of proportions with

## continuity correction

##

## data: x

## X-squared = 16.449, df = 1, p-value = 2.499e-05

## alternative hypothesis: greater

## 95 percent confidence interval:

## 0.01881967 1.00000000

## sample estimates:

## prop 1 prop 2

## 0.9355236 0.9034908

Thus, the result supports the alternative hypothesis that résumés with white-
sounding names are more likely to receive callbacks than those with black-
sounding names. It is instructive to directly compute this p-value without using the
prop.test() function. Under the null hypothesis of equal proportions between the
two groups, i.e., H0 : μ0 = μ1, the standard error of the difference-in-means (or more
accurately difference-in-proportions) estimator can be computed as

√
V̂(X)
n0

+ V̂(Y)
n1

=
√

p̂(1 − p̂)
n0

+ p̂(1 − p̂)
n1

=
√

p̂(1 − p̂)
(

1
n0

+ 1
n1

)
, (7.20)
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where X and Y are the outcome variables for the résumés with black-sounding
and white-sounding names, respectively, n0 and n1 are sample sizes, and p̂ =

1
n0+n1 (

∑n0
i=1 Xi +

∑n1
i=1 Yi ) is the overall sample proportion. We use the same estimate

p̂(1 − p̂) for the variances of X and Y because under the null hypothesis of identical
proportions, their variances, which are based on the proportions, are also identical.

## sample size

n0 <- sum(resume$race == "black")

n1 <- sum(resume$race == "white")

## sample proportions

p <- mean(resume$call) # overall

p0 <- mean(resume$call[resume$race == "black"]) # black

p1 <- mean(resume$call[resume$race == "white"]) # white

## point estimate

est <- p1 - p0

est

## [1] 0.03203285

## standard error

se <- sqrt(p * (1 - p) * (1 / n0 + 1 / n1))

se

## [1] 0.007796894

## z-statistic

zstat <- est / se

zstat

## [1] 4.108412

## one-sided p-value

pnorm(-abs(zstat))

## [1] 1.991943e-05

The exact same p-value can be obtained using the prop.test() function without
a continuity correction.

prop.test(x, alternative = "greater", correct = FALSE)

##

## 2-sample test for equality of proportions without

## continuity correction

##

## data: x

## X-squared = 16.879, df = 1, p-value = 1.992e-05

## alternative hypothesis: greater

## 95 percent confidence interval:
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Figure 7.4. The Distribution of p-Values for Hypothesis Tests Published in Two Leading
Political Science Journals.

## 0.01923035 1.00000000

## sample estimates:

## prop 1 prop 2

## 0.9355236 0.9034908

7.2.5 PITFALLS OF HYPOTHESIS TESTING
Since Fisher’s tea-tasting experiment, hypothesis testing has been extensively used

in the scientific community to determine whether or not empirical findings are
statistically significant. Statistical hypothesis testing represents a rigorous methodology
to draw a conclusion in the presence of uncertainty. However, the prevalent use of
hypothesis testing also leads to publication bias because only statistically significant
results, and especially the ones that are surprising to the scientific community, tend
to be published. In many social science journals, the α-level of 5% is regarded as the
cutoff that determines whether empirical findings are statistically significant or not. As
a result, researchers tend to submit their papers to journals only when their empirical
results have p-values smaller than this 5% threshold. In addition, journals may also be
more likely to publish statistically significant results than nonsignificant results. This is
problematic because even if the null hypothesis is true, researchers have a 5% chance
of obtaining a p-value less than 5%.

In one study, two researchers examined more than 100 articles published in the two
leading political science journals over a decade or so.2 The researchers collected the
p-values for the hypotheses tested in those articles. Figure 7.4 shows that a majority
of reported findings have p-values less than or equal to the 5% threshold, which is

2 Alan Gerber and Neil Malhotra (2008) “Do statistical reporting standards affect what is published?
Publication bias in two leading political science journals.” Quarterly Journal of Political Science, vol. 3, no. 3,
pp. 313–326.
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(a) Paul the Octopus (b) Mani the Parakeet

Figure 7.5. Two Animal Oracles that Correctly Predicted the Outcomes of Soccer
Matches. Sources: (a) Reuters/Wolfgang Rattay. (b) AP Images/Joan Leong.

indicated by the blue vertical line. In addition, there appears to be a discontinuous
jump at the threshold, suggesting that journals are publishing more empirical results
that are just below the threshold than results just above it.

Another important pitfall regarding hypothesis testing is multiple testing. Recall
that statistical hypothesis testing is probabilistic. We never know with 100% certainty
whether the null hypothesis is true. Instead, as explained earlier, we typically have type I
and type II errors when conducting hypothesis tests (see table 7.3). Multiple testing
problems refer to the possibility of false discoveries when testing multiple hypotheses.

To see this, suppose that a researcher tests 10 hypotheses when, unbeknown to the
researcher, all of these hypotheses are in fact false. What is the probability that the
researcher rejects at least one null hypothesis using 5% as the threshold? If we assume
independence among these hypotheses tests, we can compute this probability as

P (reject at least one hypothesis) = 1 − P (reject no hypothesis)
= 1 − 0.9510 ≈ 0.40.

The second equality follows because the probability of not rejecting the null hypothesis
when the null hypothesis is true is 1 − α = 0.95 and we assume independence among
these 10 hypothesis tests. Thus, the researcher has a 40% chance of making at least one
false discovery. The lesson here is that if we conduct many hypothesis tests, we are
likely to falsely find statistically significant results.

To illustrate the multiple testing problem, consider “Paul the Octopus” shown in
figure 7.5a. This octopus in a German aquarium attracted media attention during the
2010World Cup soccer tournament by correctly predicting all sevenmatches involving
Germany, as well as the outcome of the final match between the Netherlands and
Spain. Paul predicted by choosing to enter one of two containers with a country flag
as shown in the figure. Given this data, we can conduct a hypothesis test with the null
hypothesis that Paul does not possess any ability to predict soccer matches. Under this
null hypothesis, Paul randomly guesses a winner out of two countries in question.What
is the probability that Paul correctly predicts the outcomes of all 8 matches? Since Paul
has a 50% chance of correctly predicting each match, this one-sided p-value is equal
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to 1/28 ≈ 0.004. This value is well below the usual 5% threshold and hence can be
considered statistically significant.

However, the problem of multiple testing suggests that if we have many animals
predict soccer matches, we are likely to find an animal that appears to be prophetic.
During the same world cup, another animal, “Mani the Parakeet” shown in figure 7.5b,
was reported to have a similar oracle ability. The parakeet correctly predicted only
6 out of 8 matches. Each time, he selected one of two pieces of paper with his beak
and flipped it to reveal a winner, without viewing country flags as Paul did. Since no
scientific theory suggests animals can possess such predictive ability, we may conclude
that Paul and Mani represent false discoveries due to the problem of multiple testing.
Although beyond the scope of this book, statisticians have developed various methods
that make appropriate adjustments for multiple testing.

The multiple testing problem is that conducting many hypothesis tests is likely
to result in false discoveries, i.e., incorrect rejection of null hypotheses.

7.2.6 POWER ANALYSIS
Another problem of hypothesis testing is that null hypotheses are often not inter-

esting. For example, who would believe that the small class in the STAR study has
exactly zero average causal effect on students’ test scores as assumed under the null
hypothesis? The effect size might be small, but it is hard to imagine that it is exactly
zero. A related problem is that failure to reject the null hypothesis does not necessarily
mean that the null hypothesis is true. Failure to reject the null may arise because data
are not informative about the null hypothesis. For example, if the sample size is too
small, then even if the true average treatment effect is not zero, researchers may fail to
reject the null hypothesis of zero average effect because the standard error is too large.

We use power analysis in order to formalize the degree of informativeness of data in
hypothesis tests. The power of a statistical hypothesis test is defined as one minus the
probability of type II error:

power = 1 − P (type II error).

Recall from the discussion in section 7.2.2 that type II error occurs when researchers
retain a false null hypothesis. Therefore, we would like to maximize the power of a
statistical hypothesis test so that we can detect departure from the null hypothesis as
much as possible.

Power analysis is often used to determine the smallest sample size necessary to
estimate the parameter with enough precision that its observed value is distinguishable
from the parameter value assumed under the null hypothesis. This is typically done
as part of research planning in order to inform data collection. In sample surveys, for
example, researchers wish to know the number of people they must interview in order
to reject the null hypothesis of an exact tie in support level when one candidate is ahead
of the other by a prespecified degree (see also the discussion in section 7.1.4). Moreover,
experimentalists use power analysis to compute the number of observations necessary
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Figure 7.6. Illustration of Power Analysis. In the left-hand plot, the solid black line
represents the sampling distribution of sample proportion under the null hypothesis
p = 0.5 (vertical dotted line). The blue solid line represents the sampling distribution
of the test statistic under a hypothetical data-generating process, which has mean 0.48.
The sum of the two blue shaded areas equals the power of this statistical test when the
significance level is α = 0.05. The vertical dashed lines represent thresholds, above or
below which the null hypothesis will be rejected. The right-hand plot displays the power
function under the same setting with three different sample sizes.

to reject the null hypothesis of zero average treatment effect when the effect is actually
not zero. As a result, power analysis is often required for research grant applications in
order to justify the budget that researchers are requesting.

Again, we use survey sampling as an example. Suppose that we wish to find out how
many respondents we must interview to be able to reject the null hypothesis that the
support level for Obama, denoted by p, is exactly 50% when the true support level is at
least 2 percentage points away from an exact tie, i.e., 48% or less, or 52% or greater. That
is, 2 percentage points is the smallest deviation from the null hypothesis we would like
to detect with a high probability. Further assume that we will use the sample proportion
as the test statistic, and that the significance level is set to α = 0.05 with a two-sided
alternative hypothesis.

To compute the power, we need to consider two sampling distributions of the test
statistic. The first is the sampling distribution under the null distribution. We have
already derived the large sample approximation of this sampling distribution earlier:
N (p, p(1 − p)/n), where p is the null value of the population proportion. In our
application, p = 0.5. The second is the sampling distribution under a hypothetical
data-generating process. In the current case, this distribution is approximated by
N (p∗, p∗(1− p∗)/n) via the central limit theorem, where p∗ is either less than or equal
to 0.48 or greater than or equal to 0.52.

The left-hand plot of figure 7.6 graphically illustrates the mechanics of power
analysis in this case. In the plot, the two sampling distributions of the sample
proportion, one centered around 0.5 under the null hypothesis (black solid line) and
the other centered around 0.48 under a hypothetical data-generating process (blue
solid line), are shown. We choose 0.48 as the mean value under the hypothetical data-
generating process because any distribution with a mean less than this value would
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result in greater statistical power, which is the probability of correctly rejecting the null,
and hence would require a smaller sample size. For the meantime, we set the sample
size n to 250.

Under this setting, we compute the power of the statistical test, which is the
probability of rejecting the null hypothesis. To do this, we first derive the thresholds
that determine the rejection region. As shown in section 7.2.3, the threshold is equal to
the null value p0 plus or minus the product of the standard error and critical value zα/2,
i.e., p0 ± zα/2 × standard error, where in the current setting p0 = 0.5 and zα/2 ≈ 1.96.
In the left-hand plot of the figure, these thresholds are denoted by black dashed lines
and we reject the null hypothesis if an observed value is more extreme than they are.

We use the probability distribution indicated by the blue solid line in the figure
when computing the probability of rejection under the hypothetical data-generating
process. That is, the power of the test equals the sum of the two blue shaded areas in
the figure, one large area below the lower threshold and the other small area above the
upper threshold. Formally, it is given by

power = P (Xn < p − zα/2 × standard error) + P (Xn > p + zα/2 × standard error).

In this equation, the sample proportion Xn is assumed to be approximately distributed
according to N (p∗, p∗(1 − p∗)/n), where in the current application p∗ is set to 0.48.
We can compute the power of a test in R as follows.

## set the parameters

n <- 250

p.star <- 0.48 # data-generating process

p <- 0.5 # null value

alpha <- 0.05

## critical value

cr.value <- qnorm(1 - alpha / 2)

## standard errors under the hypothetical data-generating process

se.star <- sqrt(p.star * (1 - p.star) / n)

## standard error under the null

se <- sqrt(p * (1 - p) / n)

## power

pnorm(p - cr.value * se, mean = p.star, sd = se.star) +

pnorm(p + cr.value * se, mean = p.star, sd = se.star, lower.tail = FALSE)

## [1] 0.09673114

Under these conditions, the power of the test is only 10%. We can examine how
the power of this test changes as a function of the sample size and hypothetical data-
generating process. The right-hand plot of figure 7.6 presents the power function, where
the horizontal axis represents the population proportion under the hypothetical data-
generating process and each line indicates a different sample size. We observe that the
power of a statistical test increases as the sample size becomes greater and the true
population proportion p∗ shifts away from the null value p = 0.5.
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The above specific example illustrates the main principle of power analysis. We
summarize the general procedure below.

Power is defined as the probability of rejecting the null hypothesis when the null
hypothesis is false, which is equal to one minus the probability of type II error.
Power analysis consists of the following steps:

1. Select the settings of the statistical hypothesis test you plan to use. This
includes the specification of the test statistic, null and alternative
hypotheses, and significance level.

2. Choose the population parameter value under a hypothetical
data-generating process.

3. Compute the probability of rejecting the null hypothesis under this
data-generating process with a given sample size.

One can then vary the sample size to examine how the power of the test changes
to decide the sample size necessary for the desired level of power.

The power analysis can be conducted in a similar manner for two-sample tests. Con-
sider the two-sample test of proportions, which can be used to analyze a randomized
experiment with a binary outcome variable. The test statistic is the difference in sample
proportion between the treatment and control groups, Yn1 − Xn0 . Under the null
hypothesis that this difference in the population, or the population average treatment
effect (PATE), is equal to zero, the sampling distribution of the test statistic is given
by N (0, p(1 − p)(1/n1 + 1/n0)), where p is the overall population proportion (see
equation (7.20)), which is equal to the weighted average of the proportions in the two
groups, p = (n0 p0 + n1 p1)/(n0 + n1). To compute the power of the statistical test in
this case, we must specify the population proportion separately for the treatment and
control groups, p∗

1 and p∗
0 , under a hypothetical data-generating process. Then, the

sampling distribution of the test statistic under this data-generating process is given by
N (p∗

1 − p∗
0 , p∗

1 (1− p∗
1 )/n1 + p∗

0 (1− p∗
0 )/n0). Using this information, we can compute

the probability of rejecting the null.
As an example, consider the résumé experiment analyzed in section 2.1. Suppose

that we plan to send out 500 résumés with black-sounding names and another 500
résumés with white-sounding names. Further, assume that we expect the callback rate
to be around 5% for black names and 10% for white names.

## parameters

n1 <- 500

n0 <- 500

p1.star <- 0.05

p0.star <- 0.1

To compute the power of this statistical test, we first compute the overall callback
rate as a weighted average of callback rates of the two groups, where the weights are
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their sample size. We then compute the standard error under the null hypothesis, i.e.,
standard error = √

p(1 − p)(1/n0 + 1/n1), as well as under the hypothetical data-
generating process, i.e., standard error∗ =√p∗

1 (1 − p∗
1 )/n1 + p∗

0 (1 − p∗
0 )/n0.

## overall callback rate as a weighted average

p <- (n1 * p1.star + n0 * p0.star) / (n1 + n0)

## standard error under the null

se <- sqrt(p * (1 - p) * (1 / n1 + 1 / n0))

## standard error under the hypothetical data-generating process

se.star <- sqrt(p1.star * (1 - p1.star) / n1 + p0.star * (1 - p0.star) / n0)

We can now compute the power by calculating the probability that the difference
in two proportions, Yn − Xn, takes a value either less than −zα/2 × standard error or
greater than −zα/2 × standard error∗, under the hypothetical data-generating process.

pnorm(-cr.value * se, mean = p1.star - p0.star, sd = se.star) +

pnorm(cr.value * se, mean = p1.star - p0.star,

sd = se.star, lower.tail = FALSE)

## [1] 0.85228

While for illustration we computed the power by hand, we can use the
power.prop.test() function available in R. This function, which is applicable
to the two-sample test for proportions, can either compute the power given a set of
parameters or determine a parameter value given a target power level. The arguments
of this function include the sample size per group (n), population proportions for
two groups (p1.star and p2.star), significance level (sig.level), and power
(power). Note that the function assumes the two groups have an identical sample size,
i.e., n0 = n1. To compute the power, we set power = NULL (default). The following
syntax gives a result identical to what we computed above.

power.prop.test(n = 500, p1 = 0.05, p2 = 0.1, sig.level = 0.05)

##

## Two-sample comparison of proportions power calculation

##

## n = 500

## p1 = 0.05

## p2 = 0.1

## sig.level = 0.05

## power = 0.8522797

## alternative = two.sided

##

## NOTE: n is number in *each* group
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The power.prop.test() function also enables sample size calculation by simply
setting the power argument to a desired level and setting n to NULL (default). For
example, if we want to know, under the same conditions as above, theminimum sample
size necessary to obtain a 90% level of power, we use the following R syntax. The result
below implies that we need at least 582 observations per group in order to achieve
this power.

power.prop.test(p1 = 0.05, p2 = 0.1, sig.level = 0.05, power = 0.9)

##

## Two-sample comparison of proportions power calculation

##

## n = 581.0821

## p1 = 0.05

## p2 = 0.1

## sig.level = 0.05

## power = 0.9

## alternative = two.sided

##

## NOTE: n is number in *each* group

For continuous variables, we can conduct a power analysis based on Student’s
t-test, introduced in section 7.2.4. The logic is exactly the same as that described
above for one-sample and two-sample tests of proportions. The power.t.test()
function can perform a power analysis where the type argument specifies a two-
sample ("two.sample") or one-sample ("one.sample") test. For a one-sample
t-test, we must specify the mean delta and standard deviation sd of a normal
random variable under a hypothetical data-generating process. For a two-sample
t-test, the function assumes that the standard deviation and sample size are identical
for the two groups. We, therefore, specify the true difference-in-means delta under
a hypothetical data-generating process as well as a standard deviation sd. Finally, the
function assumes the null hypothesis that the mean is zero for a one-sample test and
the mean difference is zero for a two-sample test. If the null value is not zero, then one
simply has to adjust the hypothetical data-generating process by subtracting that value
from the true mean (or mean difference).

Below, we present two examples of using the power.t.test() function. The first
is the power calculation for a one-sample test with a true mean of 0.25 and standard
deviation of 1. The sample size is 100. Recall that the assumed mean value under the
null hypothesis is zero.

power.t.test(n = 100, delta = 0.25, sd = 1, type = "one.sample")

##

## One-sample t test power calculation

##
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## n = 100

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.6969757

## alternative = two.sided

Under this setting, the power is calculated to be 70%. What is the sample size we
need to have a power of 0.9 under the same setting? We can answer this question by
specifying the power argument in the power.t.test() function while leaving the
n argument unspecified.

power.t.test(power = 0.9, delta = 0.25, sd = 1, type = "one.sample")

##

## One-sample t test power calculation

##

## n = 170.0511

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.9

## alternative = two.sided

The minimum sample size for obtaining a power of 0.9 or greater is 171. The second
example is the sample size calculation for a one-sided two-sample test with a true mean
difference of 0.25 and standard deviation of 1. We set the desired power to be 90%.

power.t.test(delta = 0.25, sd = 1, type = "two.sample",

alternative = "one.sided", power = 0.9)

##

## Two-sample t test power calculation

##

## n = 274.7222

## delta = 0.25

## sd = 1

## sig.level = 0.05

## power = 0.9

## alternative = one.sided

##

## NOTE: n is number in *each* group

The result shows that we need a minimum of 275 observations per group to achieve
a power of 90% under this setting.




